267. Germany 2002, Russia 2003, IMO 2003, Aus.-Polish 1992.

by Virgil Nicula, Apr 17, 2011, 3:36 PM

Germany, 2002. Let $ABC$ be an acute-angled triangle $ABC$ with the incenter $I$ and the circumcenter $O$ . Consider the feet

$D$ , $E$ and $F$ of the altitudes from $A$ , $B$ and $C$ . Denote the intersections $K$ , $L$ and $M$ of the angle bisectors from $A$ , $B$ and $C$

with the opposite sidelines respectively. Show that $I\in EF\iff O\in LM\iff R=r_a\iff \cos B+\cos C=\cos A$ .

In conclusion,
Proof 1 (barycentrical coordinates). Prove easily that $\cos B+\cos C=\cos A$ $\Longleftrightarrow$ $\left\|\begin{array}{cc}
b\cdot \cot B+c\cdot \cot C=a\cdot \cot A & (1)\\\\ 
\frac {\sin 2B}{b}+\frac {\sin 2C}{c}=\frac {\sin 2A}{a} & (2)\end{array}\right\|$ .

It is well-known that $O\ (\sin 2A,\ \sin 2B,\ \sin 2C)\ ;\ H\ ($ $\tan A,\ \tan B,\ \tan C)\ ;\ I\ (a,\ b,\ c)\ ;\ E\ (\tan A,\ 0,\ \tan C)\ ;$

$F\ (\tan A,\ \tan B,\ 0)\ ;\ L\ (a,\ 0,\ c)\ ;\ M\ (a,\ b,\ 0)$ . Thus, $I\in EF\Longleftrightarrow \left| \begin{array}{ccc} a&b&c\\\ \tan A & 0 & \tan C\\\ \tan A & \tan B & 0\end{array}\right| =0\Longleftrightarrow \ (1)$

and $O\in LM\Longleftrightarrow \left| \begin{array}{ccc} \sin 2A & \sin 2B & \sin 2C \\\ a&0&c \\\ a&b&0 \end{array}\right|=0\Longleftrightarrow \ (2)$ .

Proof 2 (metric). Denote $S\in AO\cap BC$ . From the well-known properties $\left\{\begin{array}{cccc}
I\in EF & \implies & \frac {IK}{IA}\cdot BC=\frac {EC}{EA}\cdot KB+\frac {FB}{FA}\cdot KC & (1)\\\\
O\in LM & \iff & \frac {OS}{OA}\cdot BC=\frac {LC}{LA}\cdot SB+\frac {MB}{MA}\cdot SC & (2)\end{array}\right\|\ ,$

$\frac {SB}{c\cdot \cos C}=\frac {SC}{b\cdot\cos B}=\frac {a}{b\cdot\cos B+c\cdot\cos C}$ and $\frac {KB}{c}=\frac {KC}{b}=\frac {a}{b+c}$ obtain that :

$(1)\iff$ $\frac {a}{b+c}\cdot a=\frac {a\cdot\cos C}{c\cdot \cos A}\cdot \frac {ca}{b+c}+$ $\frac {a\cdot \cos B}{b\cdot\cos A}\cdot \frac {ba}{b+c}$ $\iff$ $1=\frac {\cos C}{\cos A}+\frac {\cos B}{\cos A}$ $\iff$ $\cos B+\cos C=\cos A$ .

$(2)\iff$ $\frac {a\cdot\cos C}{b\cdot\cos B+c\cdot\cos C}\cdot\frac {\cos A}{\cos C}\cdot a=$ $\frac ac\cdot\frac {ac\cdot \cos C}{b\cdot\cos B+c\cdot\cos C}+$ $\frac ab\cdot\frac {ab\cdot\cos B}{b\cdot\cos B+c\cdot\cos C}\iff$ $\cos B+\cos C=\cos A$ .


An easy extension. Let $ABC$ be an acute-angled triangle $ABC$ with the incenter $I$ and denote $\left\|\begin{array}{c}
K\in AI\cap BC\\\
L\in BI\cap CA\\\
M\in CI\cap AB\end{array}\right\|$ .

For an interior point $P$ denote $\left\|\begin{array}{c}
D\in AP\cap BC\\\
E\in BP\cap CA\\\
F\in CP\cap AB\end{array}\right\|$ and for its isogonal point $R$ denote $\left\|\begin{array}{c}
S\in AR\cap BC\\\
T\in BR\cap CA\\\
U\in CR\cap AB\end{array}\right\|$ . Prove that

$\boxed {\ I\in EF\ \iff\ R\in LM\ \iff\ \frac ax=\frac by+\frac cz\ }$ , where $P$ has the barycentrical coordinates $(x,y,z)$ w.r.t. $\triangle ABC$ .


Proof (barycentrical coordinates). It is well-known that $\left\|\begin{array}{ccc}
I(a,b,c) & L(a,0,c) & M(a,b,0)\\\\
P(x,y,z) & E(x,0,z) & F(x,y,0)\end{array}\right\|$ and $R\left(\frac {a^2}{x},\frac {b^2}{y},\frac {c^2}{z}\right) $ .

Thus, $I\in EF\Longleftrightarrow \left|\begin{array}{ccc} 
a&b&c\\\\ 
x & 0 & z\\\\ 
x & y & 0\end{array}\right| =0\Longleftrightarrow$ $\frac ax=\frac by+\frac cz$ and $R\in LM\Longleftrightarrow \left| \begin{array}{ccc} \frac {a^2}{x} & \frac {b^2}{y} & \frac {c^2}{z}\\\\ a&0&c\\\\ a&b&0 \end{array}\right|=0\Longleftrightarrow$ $\frac ax=\frac by+\frac cz$ .



Generalization. Let $ABC$ be a triangle. Consider $M$ , $N$ and its isogonals $P$ , $R$ respectively. For any $X$ define $\left\{\begin{array}{c}
X_a\in AX\cap BC\\\\
X_b\in BX\cap AC\\\\
X_c\in CX\cap AB\end{array}\right\|$ ,

i.e. $\triangle X_aX_bX_c$ is the cevian triangle of $X$ w.r.t. $\triangle ABC$ . Prove that $\boxed {\ N\in M_bM_c\ \iff\ P\in R_bR_c\ \iff\ \frac ux=\frac vy+\frac wz\ }$ ,

where the points $M$ , $N$ have the barycentrical coordinates $(x,y,z)$ and $(u,v,w)$ respectively w.r.t. $\triangle ABC$ .


Proof. Observe that $N\in M_bM_c\iff \left|\begin{array}{ccc}
u & v & w\\\\
x & y & 0\\\\
x & 0 & z\end{array}\right|=0\iff$ $\frac ux=\frac vy+\frac wz$ and

$P\in R_bR_c\iff$ $\left|\begin{array}{ccc}
\frac {a^2}{x} & \frac {b^2}{y} & \frac {c^2}{z}\\\\
\frac {a^2}{u} & \frac {b^2}{v} & 0\\\\
\frac {a^2}{u} & 0 & \frac {c^2}{w}\end{array}\right|=0\iff$ $\left|\begin{array}{ccc}
\frac {1}{x} & \frac {1}{y} & \frac {1}{z}\\\\
\frac {1}{u} & \frac {1}{v} & 0\\\\
\frac {1}{u} & 0 & \frac {1}{w}\end{array}\right|=0\iff$ $\frac ux=\frac vy+\frac wz$ .



Russia, 2003. In $\triangle ABC$ with circumcircle $w=C(O,R)$ , $b\ne c$ denote $\begin{array}{c}
EA=EB\ ;\ BE\perp BC\\\\
FA=FC\ ;\ CF\perp CB\end{array}$ and $D\in BC$ so that $AD$ is tangent to $w$ . Prove $D\in EF$ .

Proof 1 (metric). From the relations $\left\|\begin{array}{c}
\frac c2=EB\cdot\sin B\\\\
\frac b2=FC\cdot \sin C\end{array}\right\|$ obtain $\frac {EB}{FC}=\left(\frac cb\right)^2$ and well-known property $\frac {DB}{DC}=\left(\frac cb\right)^2\ (*)\implies$ $\frac {DB}{DC}=\frac {EB}{FC}\implies$ $D\in EF$ .

Proof 2 (synthetic). Prove easily that $\left\{\begin{array}{ccccc}
\triangle BEO\sim\triangle ABC & \implies & \frac {BE}{c}=\frac {BO}{b} & \implies & BE=\frac cb\cdot R\\\\
\triangle COF\sim\triangle ABC & \implies & \frac {CO}{c}=\frac {CF}{b} & \implies & CF=\frac bc\cdot R\end{array}\right\|$ $\implies\ \boxed{BE\cdot CF=R^2}\ \ \wedge\ \ \frac {BE}{CF}=\left(\frac cb\right)^2$ .

From well-known property $\frac {DB}{DC}=\left(\frac cb\right)^2\ (*)$ obtain $\frac {DB}{DC}=\frac {BE}{CF}$ $\implies$ $D\in EF$ . If $M$ is the midpoint of $[BC]$ , then $AM\perp EF$ and $\frac {EF}{a}=\frac {m_a}{h_a}$ . Indeed,

$ME^2-MF^2=$ $\left(MB^2+BE^2\right)-\left(MC^2+CF^2\right)=BE^2-CF^2=$ $AE^2-AF^2\implies$ $ME^2-MF^2=AE^2-AF^2\implies$ $AM\perp EF$ .

=========================================================================================================================================

$(*)$ From the relation $\triangle DAC\sim\triangle DBA$ obtain that $\frac {DA}{DB}=\frac bc=\frac {DC}{DA}\implies$ $\left\{\begin{array}{c}
DB=\frac cb\cdot DA\\\\
DC=\frac bc\cdot DA\end{array}\right\|\implies \frac {DB}{DC}=\left(\frac cb\right)^2$ .



44 IMO 2003 Tokyo. Let $P$ be a point in the interior of the triangle $ABC$ . Let $D$, $E$, $F$ be the feet of the perpendiculars from $P$ to $BC$, $CA$, $AB$ respectively.

Assume that $AP^{2}+PD^{2}=BP^{2}+PE^{2}=CP^{2}+PF^{2}$ . Show that $P$ is the circumcenter of $I_{a}I_{b}I_{c}$ , where $I_{a}$ , $I_{b}$ , $I_{c}$ are the exincenters of $ABC$ .


Proof. Observe that $PA^2+PD^2=$ $PE^2+EA^2+PD^2$ and $PB^2+PE^2=$ $PD^2+DB^2+PE^2$ $\Longrightarrow$ $AE=BD$ . In the same

way we show that $CE=BF$ and $AF=CD$ . Prove easily that $D$ , $E$ , $ F$ are the projections of $I_a$ , $I_b$ , $I_c$ on $BC$ , $CA$ , $AB$ respectively, i.e.

$AE=BD=s-c$ , $AF=CD=s-b$ , $BF=CE=s-a$ . Denote the projection $F'=\mathrm{pr}_{AB}I_a$ . Observe that $BF'=BD=s-c$

and $b=(s-a)+(s-c)=$ $BF+BF'=FF'=\mathrm{pr}_{AB}[PI_a]=PI_a\cdot\sin\widehat{PI_aF'}=PI_a\cdot\sin B$ $\implies$ $PI_a=\frac {b}{\sin B}=2R$ , where

$R$ is the length of the circumcenter for $\triangle ABC$ . In conclusion, $PI_a=PI_b=PI_c=2R$ , i.e. the point $P$ is the circumcenter of the triangle $I_{a}I_{b}I_{c}$ .

Otherwise. Prove easily that the triangles $I_aPI_b$ , $I_bPI_c$ ,$I_cPI_a$ are isosceles , i.e. $PI_a=PI_b=PI_c$ .Observe that in $\triangle I_aPI_b$ exists the relation $\frac {PI_a}{\sin\frac C2}=\frac {I_aI_b}{\sin C}$ .
Therefore, $PI_a=\frac {I_aI_b}{2\cos\frac C2}=$ $\frac {r_a+r_b}{2\cos^2\frac C2}=$ $\frac {\frac {S}{s-a}+\frac {S}{s-b}}{\frac {2s(s-c)}{ab}}=$ $\frac {abcS}{2s(s-a)(s-b)(s-c)}=2R$ . In conclusion, $PI_a=PI_b=PI_c=2R$ .

Otherwise. If $A'$ , $B'$ , $C'$ are the intersections of $AI$ , $BI$ , $CI$ respectively with the circumcircle of $\triangle ABC$ , then $A'B'C'\sim I_aI_bI_c$ ,

where $I\in A'I_a\cap B'I_b\cap C'I_c$ and $B'C'\parallel I_bI_c$ , $C'A'\parallel I_cI_a$ , $A'B'\parallel I_aI_b$ (homothety). Since $2\cdot IA'=II_a$ obtain that the length

of the circumradius for $\triangle I_aI_bI_c$ is equally to $2R$ , where $R$ is the length of the circumradius for $\triangle A'B'C'$ , i.e. the circumradius of $\triangle ABC$ .



Austrian-Polish MO 1992. Let $[AB]$ be a fixed diameter of the circle $w=C(O)$ . Consider a fixed point $K\in (AO)$ .

Denote by $XX$ the line which is tangent to $w$ at $X\in w$ . For any mobile chord $[CD]$ other than $[AB]$ for which the

point $K\in CD$ denote $P\in BC\cap AA$ and $Q\in BD\cap AA$ . Prove that the product $AP\cdot AQ$ is constant.


Proof.

\[\boxed{\ \begin{array}{c}
\frac {KA}{KB}\cdot PQ=\frac {CP}{CB}\cdot AQ+\frac {DQ}{DB}\cdot AP\\\\
\frac {KA}{KB}\cdot PQ=\left(\frac {AP}{AB}\right)^2\cdot AQ+\left(\frac {AQ}{AB}\right)^2\cdot AP\\\\
AB^2\cdot\frac {KA}{KB}\cdot PQ=AP\cdot AQ\cdot (AP+AQ)\\\\
AP\cdot AQ=AB^2\cdot\frac {KA}{KB}\\\\
AP\cdot AQ\ \mathrm{- constant.}\end{array}\ }\]

Polish Mathematical Olympiad. Let a $ C$ - isosceles $\triangle  ABC$ . For $ D\in (AB)$ , $ AD < DB$ let the reflection $ E$ of $ A$ w.r.t. $ CD$. Prove that $ \frac {AC}{CD} = \frac {BE}{BD - AD}$ .

Proof. Prove easily that $ \left\{\begin{array}{c} \widehat {CED}\equiv\widehat {CAD}\equiv\widehat {CBD} \\
 \\
BC = CE = AC\ ,\ DE = AD\end{array}\right\|$ $ \implies$ $ \widehat {CED}\equiv\widehat {CBD}$ , i.e. the quadrilateral $ BCDE$ is cyclically. Apply the Ptolemy's theorem

in the quad.rilateral $ BCDE\ :\ BC\cdot DE + CD\cdot BE = BD\cdot CE$ $ \Longleftrightarrow$ $ AC\cdot AD + CD\cdot BE = BD\cdot AC$ $ \Longleftrightarrow$ $ \boxed {\frac {AC}{CD} = \frac {BE}{BD - AD}}$ .

Remark. If $ F\in CD\cap BE$ , then the quadrilateral $ ACBF$ is cyclically and $ \boxed {\frac {AC}{CF} = \frac {AB}{AF + BF}}$ .
This post has been edited 82 times. Last edited by Virgil Nicula, Nov 22, 2015, 8:39 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a