442. Problems from and for baccalaureate II.

by Virgil Nicula, Apr 14, 2016, 4:15 PM

P1. Find the distance between the lines $\odot\begin{array}{cccc}
\nearrow & d_1\ : & \frac{x-1}2=\frac {y+1}3=z & \searrow\\\\
\searrow & d_2\ : & \frac {x+1}3=\frac y4=\frac {z-1}3 & \nearrow\end{array}\odot$ in the analytical space.

Proof 1. $\left\{\begin{array}{cccc}
d_1\ : & \frac{x-1}2=\frac {y+1}3=z=m & \implies & M(2m+1,3m-1,m)\\\\
d_2\ ; & \frac {x+1}3=\frac y4=\frac {z-1}3=n & \implies & N(3n-1,4n,3n+1)\end{array}\right\|$ $\implies$ $MN^2=(2m-3n+2)^2+(3m-4n-1)^2+(m-3n-1)^2=2[f(m,n)+3]$ ,

where $f(m,n)=7m^2+17n^2-21mn+n\ .$ I"ll search $\min_{\{m,n\}\subset\mathbb R}f(m,n)=\min_{m\in\mathbb R}\min_{n\in\mathbb R}g_m(n)$ , where $g_m(n)=17\underline n^2-(21m-1)\underline n+7m^2$ . Hence $\boxed{n=\frac {21m-1}{34}}\ (*)$ and

$h(m)=\min_{n\in\mathbb R}g_m(n)=-\frac {\Delta (m)}{4\cdot 17}$ , where $\Delta (m)=(21m-1)^2-68\cdot 7m^2=-35m^2-42m+1\implies$ $\min_{\{m,n\}\subset\mathbb R}f(m,n)=\min_{m\in\mathbb R}h(m)\ ,\ h(m)=\frac 1{68}\cdot\left(35m^2+42m-1\right)$ .

Observe that $\boxed{m=-\frac 35\ \wedge\ n=-\frac 25}\ (1)$ and $\min_{\{m,n\}\subset\mathbb R}f(m,n)=\min_{m\in\mathbb R}h(m)=-\frac 15$ . In conclusion, $\min MN^2=2\left(-\frac 15+3\right)=\frac {28}5$ , i.e. $\boxed{MN=2\cdot\sqrt{\frac 75}}\ (2)$ .

Remark. $\left\{\begin{array}{cccc}
m=-\frac 35 & \implies & M\left(-\frac 15,-\frac {14}5,-\frac 35\right)\\\\
n=-\frac 25 & \implies & N\left(-\frac {11}5,-\frac 85,-\frac 15\right)\end{array}\right\|$ $\implies$ the equation of $MN$ is $\frac {x+\frac 15}{-\frac {11}5+\frac 15}=\frac {y+\frac {14}5}{-\frac 85+\frac {14}5}=\frac {z+\frac 35}{-\frac 15+\frac 35}\implies$ $\boxed{\frac {5x+1}{-5}=\frac {5y+14}3=\frac {5z+3}1}\ (3)$ is surjective.

Verify: $MN^2=2^2+\left(\frac 65\right)^2+\left(\frac 25\right)^2=4+\frac {36+4}{25}=4+\frac 85\implies$ $MN^2=\frac {28}5$ and $\left\{\begin{array}{ccc}
MN\perp d_1 & \iff & 2\cdot (-5)+3\cdot 3+1\cdot 1=0\\\\
MN\perp d_2 & \iff & 3\cdot (-5)+4\cdot 3+3\cdot 1=0\end{array}\right\|$ .

Proof 2. The equation of the plane $\pi$ for which $d_1\subset\pi\parallel d_2$ is $\left|\begin{array}{ccc}
x-1 & y+1 & z\\\
2 & 3 & 1\\\
3 & 4 & 3\end{array}\right|\iff$ $\pi (x,y,z)\equiv 5x-3y-z-8=0$ .

Choose the point $P(-1,0,1)\in d_2$ and calculate the distance $\delta_{\pi}(P)=\frac {|\pi (-1,0,1)|}{\sqrt{5^2+3^2+1^2}}=\frac {14}{\sqrt{35}}\implies$ $\boxed{\delta\left(d_1,d_2\right)=2\cdot\sqrt{\frac 75}}\ .$

Proof 3. I"ll use the well-known property $\left\{\begin{array}{ccc}
ax+by+cz & = & 0\\\\
a'x+b'y+c'z & = & 0\end{array}\right\|\iff$ $\frac x{\left|\begin{array}{cc}
b & c\\\
b' & c'\end{array}\right|}=\frac y{\left|\begin{array}{cc}
c & a\\\
c' & a'\end{array}\right|}=\frac z{\left|\begin{array}{cc}
a & b\\\
a' & b'\end{array}\right|}$ . If the "slope" of

the required $MN$ is $s(p,q,r)$ , then $\left\{\begin{array}{ccc}
MN\perp d_1 & \iff & 2p+3q+r=0\\\\
MN\perp d_2 & \iff & 3p+4q+3r=0\end{array}\right\|\iff$ $\frac p{\left|\begin{array}{cc}
3 & 1\\\
4 & 3\end{array}\right|}=\frac q{\left|\begin{array}{cc}
1 & 2\\\
3 & 3\end{array}\right|}=\frac r{\left|\begin{array}{cc}
2 & 3\\\
3 & 4\end{array}\right|}$ $\iff$

$\frac p5=\frac q{-3}=\frac r{-1}\iff$ the equation of the plane $\pi$ for which $d_1\subset\pi\parallel d_2$ is $5(x-1)-3(y+1)-z=0$ $\iff$ $5x-3y-z-8=0$ a.s.o.



P2. Fie planul $\pi$ care sectioneaza muchiile tetraedrului $ABCD$ in punctele interioare $\left\{\begin{array}{ccccccc}
M\in (AB) & , &  \frac {MA}{MB}=m & ; & N\in (BC) & , & \frac {NB}{NC}=n\\\\
P\in  (CD) & , & \frac {PC}{PD}=p & ; & Q\in (DA) & , & \frac {QD}{QA}=q\end{array}\right\|$ si in punctele exterioare

$\left\{\begin{array}{ccccc}
R\in MN\cap AC\cap PQ & \implies & C\in (AR) & \mathrm{si} &  \frac {RC}{RA}=r\\\\
S\in NP\cap BD\cap MQ & \implies & D\in (BS) & \mathrm{si} & \frac{SB}{SD}=s\end{array}\right\|$ . Sa se afle relatiile intre $\{m,n,p,q,r,s\}$ si raportul in care planul $\pi$ imparte volumul $v$ al tetraedrului $ABCD$ .


Dem.. Aplicam teorema Menelaus la $:\ \left\{\begin{array}{cc}
\overline{MNR}/\triangle ABC\ : & \frac {RC}{RA}\cdot\frac {MA}{MB}\cdot\frac {NB}{NC}=1\implies rmn=1\\\\
\overline{QPR}/\triangle ACD\ : & \frac {RC}{RA}\cdot \frac {QA}{QD}\cdot\frac {PD}{PC}=1\implies r=pq\end{array}\right|\left|\begin{array}{cc}
\overline{SQM}/\triangle ABD\ : & \frac {SB}{SD}\cdot\frac {QD}{QA}\cdot\frac {MA}{MB}=1\implies sqm=1\\\\
\overline{SPN}/\triangle BCD\ : & \frac {SB}{SD}\cdot \frac {PD}{PC}\cdot\frac {NC}{NB}=1\implies s=pn\end{array}\right\|$

Asadar, $\boxed{\begin{array}{ccccc}
pq & = & r & = & \frac 1{mn}\\\\
pn & = & s & = & \frac 1{mq}\end{array}}\ (*)$ $\implies$ $\boxed{mnpq=1}\ (1)$ $\implies$ $\left\{\begin{array}{c}
\frac {v[RAMQ]}{v[ABCD]}=\frac {[AMQ]\cdot\delta_{ABD}(R)}{[ABD]\cdot\delta_{ABD}(C)}=\frac {[AMQ]}{[ABD]}\cdot\frac {\delta_{ABD}(R)}{\delta_{ABD}(C)}=\frac {AM}{AB}\cdot\frac {AQ}{AD}\cdot\frac {RA}{CA}=\frac m{m+1}\cdot \frac 1{q+1}\cdot \frac 1{1-r}\\\\
\frac {v[RCNP]}{v[ABCD]}=\frac {[CNP]\cdot\delta_{BCD}(R)}{[BCD]\cdot\delta_{BCD}(A)}=\frac {[CNP]}{[CBD]}\cdot\frac {\delta_{BCD}(R)}{\delta_{BCD}(A)}=\frac {CN}{CB}\cdot\frac {CP}{CD}\cdot\frac {RC}{CA}=\frac 1{n+1}\cdot \frac p{p+1}\cdot \frac r{1-r}\end{array}\right\|$ . In concluzie,

$\frac {v[ACMNPQ]}{v[ABCD]}=\frac {v[RAMQ]}{v[ABCD]}-\frac {v[RCNP]}{v[ABCD]}=$ $\frac m{m+1}\cdot \frac 1{q+1}\cdot \frac 1{1-r}-$ $\frac 1{n+1}\cdot \frac p{p+1}\cdot \frac r{1-r}=$ $\frac 1{1-r}\cdot \left[\frac m{(m+1)(q+1)}-\frac {pr}{(n+1)(p+1)}\right]=f(m,n,p,q)$ , $r=pq$ .

Caz particular. Daca $m=p=1$ , atunci $r=q$ si $nq=1$ , adica punctele $M$ si $P$ sunt mijloacele muchiilor opuse $[AB]$ si $[CD]$ .Se obtine

usor ca $\frac {v[ACMNPQ]}{v[ABCD]}=\frac 1{1-q}\cdot\left[\frac 1{2(q+1)}-\frac {q^2}{2(q+1)}\right]=\frac {1-q^2}{2(1-q)(1+q)}=\frac 12$ , adica $2\cdot v[ACMNPQ]=v[ABCD]$ .



P3. Study if the system $\left\{\begin{array}{ccc} a+b+c & = & m\\\\ a^2+b^2+c^2 & = & n \end{array}\right\|$ has real solutions, where $\{m,n\}\subset\mathbb R$ .

Proof. $\left(\sum a\right)^2=\sum a^2+2\sum (bc)\iff$ $bc+a(b+c)=\frac {m^2-n}2\iff$ $\ \stackrel{b+c=m-a}{\implies}\ bc=$ $\frac {m^2-n}2-a(m-a)\iff$ $\odot \begin{array}{ccccc}
\nearrow & b+c & = & m-a & \searrow\\\\
\searrow & bc & = & a^2-am+\frac {m^2-n}2 & \nearrow\end{array}\odot$ $\implies$

$ t^2-(m-a)t+\left(a^2-am+\frac {m^2-n}2\right)=0\begin{array}{cc}
\nearrow & b\\\\
\searrow & c\end{array}\ ,$ where $\Delta(a)=(m-a)^2-4a^2+4am-2\left(m^2-n\right)\implies$ $\Delta (a)=-3a^2+2am-m^2+2n$ . In conclusion,

$\Delta\ge 0\iff$ $\boxed{3a^2-2am+\left(m^2-2n\right)\le 0}\ (*)\ ,$ i.e. $m^2\le 3n$ and in this case for $|3a-m|\le \sqrt{2\left(3n-m^2\right)}$ we have $\{b,c\}=\left\{\frac {m-a\pm\sqrt{-3a^2+2am-m^2+2n}}2\right\}\ .$



P4. Solve the system of equations in real numbers $\left\{\begin{array}{ccc}
y^2+yz+z^2 & = & a\\\
z^2+zx+x^2 & = & b\\\
x^2+xy+y^2 & = & c\end{array}\right\|$ , where $a+c=2b$ and $x+y+z\ne 0\ .$

Proof. $a+c=2b\iff$ $\left(y^2+yz+z^2\right)+\left(x^2+xy+y^2\right)=2\left(z^2+zx+x^2 \right)\iff$ $2y^2+y(x+z)=x^2+2xz+z^2\iff$ $(x+z)^2-y(x+z)-2y^2=0\iff$

$\left(\frac {x+z}y\right)^2-\frac {x+z}y-2=0\ \stackrel{x+z=ty}{\iff}\ t^2-t-2=0\begin{array}{ccccc}
\nearrow & t_1=-1 & \implies & x+y+z=0 & \searrow\\\\
\searrow & t_2=2 & \implies & x+z=2y & \nearrow\end{array}\odot$ Since $x+y+z\ne 0$ obtain that $\boxed{x+z=2y}\ (*)$ . Therefore,

$x^2+xz+z^2=b\iff (x+z)^2-xz=b\iff \boxed{xz=4y^2-b}$ . Hence the equations $\odot\begin{array}{ccccccccc}
\nearrow & t^2 & - & 2yt & + & \left(4y^2-b\right) & = & 0 & \searrow\\\\
\searrow & t^2 & + & yt & + & \left(y^2-a\right) & = & 0 & \nearrow\end{array}z\ ($ have at least a common root $z)$ .

So $\left|\begin{array}{cc}
1 & -2y\\\\
1 & y\end{array}\right|\cdot \left|\begin{array}{cc}
-2y & 4y^2-b\\\\
y & y^2-a\end{array}\right|=\left|\begin{array}{cc}
1 & 4y^2-b\\\\
1 & y^2-a\end{array}\right|^2\iff$ $3y^2\cdot \left|\begin{array}{cc}
-2 & 4y^2-b\\\\
1 & y^2-a\end{array}\right|=\left[3y^2+(a-b)^2\right]^2$ $\iff$ $3y^2\left[6y^2-(2a+b)\right]+9y^4+6(a-b)y^2+(a-b)^2=0$

$\iff$ $\boxed{27y^4-9by^2+(a-b)^2=0}\ (1)$ a.s.o. Particular case. $\left\{\begin{array}{ccc}
a & = & 19\\\
b &= & 28\\\
c & = & 37\end{array}\right\|$ . Thus, $(1)$ becomes $27y^4-9\cdot 28y^2+81=0\iff$ $3y^4-28y^2+9=0\begin{array}{cccc}
\nearrow & y^2 & = & 9\\\\ 
\searrow & y^2 & = & \frac 13\end{array}$ .

In conclusion, $y\in\left\{3\ ;\ -3\ ;\ \frac {\sqrt 3}3\ ;\ -\frac {\sqrt 3}3\right\}\implies$ $\left\{\begin{array}{ccc}
y=3 & \implies & \odot\begin{array}{cccccc}
\nearrow & x^2+3x+9=37 & \implies & x^2+3x-28=0 & \implies & x\in\{-7 ;4\}\\\\
\searrow & z^2+3z+9=19 & \implies & z^2+3z-10=0 & \implies & z\in\{-5;2\}\end{array}\\\\
y=-3 & \implies & \odot\begin{array}{cccccc}
\nearrow & x^2-3x+9=37 & \implies & x^2-3x-28=0 & \implies & x\in\{7;-4\}\\\\
\searrow & z^2-3z+9=19 & \implies & z^2-3z-10=0 & \implies & z\in\{5;-2\}\end{array}\end{array}\right\|\ \stackrel{x+z=2y}{\implies}$

$(4,3,2)$ and $(-4,-3,-2)$ a.s.o.


P5. Find the complex numbers $z$ for which $\boxed{\ z^2+2\mathrm i\overline z=0\ }$ .

Proof 1. $\left\{\begin{array}{ccc}
z^2+2\mathrm i\overline z & = & 0\\\\
\overline z^2-2\mathrm iz & = & 0\end{array}\right\|\ominus$ $\implies$ $z^2-\overline z^2+2\mathrm i\left(\overline z+z\right)=0\implies$ $\left(z+\overline z\right)\left(z-\overline z+2\mathrm i\right)=0\implies$ $2\Re(z)\cdot\left[2\mathrm i\Im (z) +2\mathrm i\right]=0\implies$ $\Re (z)\cdot\left[\Im (z)+1\right]=0\implies$

$\odot\begin{array}{cccccccccc}
\nearrow & \Re (z)=0 & \implies & z=bi & \implies & (b\mathrm i)^2+2\mathrm i(-b\mathrm i)=0 & \implies & -b^2+2b=0 & \implies & \odot\begin{array}{cccc}
\nearrow & \Im (z)=0 & \implies & z=0\\\\
\searrow & \Im (z)=2 & \implies & z=2\mathrm i\end{array}\\\\
\searrow & \Im (z)=-1 & \implies & z=a-i & \implies & (a-\mathrm i)^2+2\mathrm i(a+\mathrm i)=0 & \implies & -a^2-3=0 & \implies & \odot\begin{array}{cccc}
\nearrow & \Re (z)=\sqrt 3 & \implies & z=\sqrt 3-\mathrm i\\\\
\searrow & \Re (z)=-\sqrt 3 & \implies & z=-\sqrt 3-\mathrm i\end{array}\end{array}$

Proof 2. $z=a+b\mathrm i\implies$ $(a+b\mathrm i )^2+2\mathrm i\left(\overline {a+b\mathrm i}\right)=0$ $\iff$ $a^2+2ab\mathrm i -b^2+2a\mathrm i+2b=0$ $\begin{array}{ccc}
\nearrow & 2a(b+1)=0 & \searrow\\\\
\searrow & a^2-b^2+2b=0 & \nearrow\end{array}\odot\implies$ $z\in\left\{0\ ,\ 2\mathrm i\ ,\ \sqrt 3-\mathrm i\ ,\ -\sqrt 3-\mathrm i\right\}$ .



P6. Find the range $\mathrm {Im(f)}$ of the function $f(x)=x+\sqrt {x^4+3}$ , where $x\in\mathbb R\ .$

Proof. $(\forall )\ x\ge 0$ the function $f$ is increasing $(\nearrow )$ and $f(x)\ge \sqrt 3$ . Now suppose that $x<0$ . Thus, $f(x)\ge 1=f(-1)\iff$ $\sqrt{x^4+3}\ge 1-x\iff$ $x^4+3\ge (1-x)^2\iff$

$x^4-x^2+2x+2\ge 0\iff$ $(x+1)^2\left(x^2-2x+2\right)\ge 0$ what is truly. So $\boxed{(\forall )\ x\in\mathbb R\ ,\ f(x)\ge 1=f(-1)\ ,\ \mathrm{i.e.}\ f:\mathbb R\rightarrow [1,\infty)}$ and $\mathrm {Im(f)}=f(\mathbb R)=[1,\infty ).$ See
here.


P7. Find the maximum of the expression $\left|2x+y-z\right|$ where $\{x,y,z\}\subset\mathbb R$ and $x^2+3y^2+z^2=2$ .

Proof. $(2x+y-z)^2=\left[2\cdot x+\frac 1{\sqrt 3}\cdot y\sqrt 3+(-1)\cdot z\right]^2\ \stackrel{(C.B.S)}{\le}\ \left[2^2+\left(\frac 1{\sqrt 3}\right)^2+(-1)^2\right]$ $\cdot\left[x^2+\left(y\sqrt 3\right)^2+z^2\right]=$ $\frac {16}3\cdot 2=$ $\frac {32}3\implies$ $|2x+y-z|\le \frac {4\sqrt 6}3\ .$


P8. Prove that for any $\{x,y\}\subset\mathbb R$ there is the chain $4\le (x+y)\left(\frac 1x+\frac 1y\right)\le \left(\frac xy+\frac yx\right)^2\ .$

Proof. The inequalities $(x+y)\left(\frac 1x+\frac 1y\right)\ge 4$ and $\left(\frac xy+\frac yx\right)^2\ge 4$ are well known. Thus, $\left\{\begin{array}{ccc}
x^2+y^2 & \ge & 2xy\\\\
2\left(x^2+y^2\right) & \ge &  (x+y)^2\end{array}\right\|\ \bigodot\implies$

$\left(x^2+y^2\right)^2\ge xy(x+y)^2\ \stackrel{:\ \left(x^2y^2\right)}{\implies}\ \left(\frac{x^2+y^2}{xy}\right)^2\ge (x+y)\cdot \frac {x+y}{xy}\implies$ $(x+y)\left(\frac 1x+\frac 1y\right)\le \left(\frac xy+\frac yx\right)^2\ .$

Remark. The chain of the inequalities $\frac 2{\frac 1x+\frac 1y}\le $ $\sqrt {xy}\le \frac {x+y}2\le\sqrt{\frac {x^2+y^2}2}$ $\mathrm{(\ H.M.\ \le\ G.M.\ \le\ A.M.\ \le\ P.M.\ )}$ is well-known.



P9. Prove that $8x(2x^2-1)(8x^4-8x^2+1)=1\iff(2 x-1)(8 x^3-6x-1)(8 x^3+4x^2-4x-1)=0\ (*)$ and solve the equation $(*)\ .$


P10. Let the equation $t^3+mt^2+nt+p=0\implies\odot \begin{array}{ccc}
\nearrow & a & \searrow\\\\
\rightarrow & b & \rightarrow\\\\
\searrow & c & \nearrow\end{array}\odot$ Solve the equation $\frac {x-(b+c)}a+\frac {x-(c+a)}b+\frac {x-(a+b)}c=k\ .$

Proof. Observe that (Viete's relations) $:\ \left\{\begin{array}{cccc}
a+b+c & = & -m & (1)\\\\
ab+bc+ca & = & n & (2)\\\\
abc & = & -p & (3)\end{array}\right\|\ .$ Hence $\sum \frac {x-(b+c)}a=k\ \stackrel{(1)}{\iff}\ \sum\frac {x+m+a}{a}=k\iff$ $\sum\left(1+\frac {x+m}a\right)=k\iff$

$(x+m)\cdot\sum\frac 1a=k-3\iff$ $(x+m)\cdot \frac {ab+bc+ca}{abc}=k-3\ \stackrel{2\wedge 3}{\iff}\ (x+m)\cdot \frac np=3-k\iff$ $x+m=\frac {p(3-k)}n\iff$ $\boxed{x=\frac {p(3-k)}n-m}\ (*)\ .$



P11. Find $L\equiv \lim_{x\to\infty}x\cdot\left(1-\frac {\ln x}{x}\right)^x\ .$

Proof. $L\equiv\lim_{x\to\infty}\ x\cdot\left(1-\frac {\ln x}{x}\right)^x\ \stackrel{\left(x:=\frac 1x\right)}{\ =\ }\ \lim_{x\to 0}\ \frac {(1+x\ln x)^{\frac 1x}}{x}=e^l\ ,$ where $l=\lim_{x\to 0}\ \frac {\ln (1+x\ln x)-x\ln x}{x}\ \stackrel {(l^{\prime}H)}{\ =\ }$

$\lim_{x\to 0}\ \left[\frac {1+\ln x}{1+x\ln x}-(1+\ln x)\right]=-\lim_{x\to 0}\ \frac {x\ln x(1+\ln x)}{1+x\ln x}=0\ .$ In conclusion, $\lim_{x\to\infty}x\cdot\left(1-\frac {\ln x}{x}\right)^x=1\ .$

Remark. I used an wel known limit $\boxed{\lim_{x\to 0}\ x\ln^{\alpha} x=0\ ,\ \alpha > 0\ }\ .$ Here is an its proof. I used the substitution $x:=x^{\alpha}\ \ :\ \lim_{x\to 0}\ x\ln^{\alpha} x=$

$\lim_{x\to 0}\ x^{\alpha}\left(\ln x^{\alpha}\right)^{\alpha}=\alpha ^{\alpha}\cdot\lim_{x\to 0}\ \left(x\ln x\right)^{\alpha}=0$ because $\lim_{x\to 0}\ x\ln x\ \stackrel{\left(x:=\frac 1x\right)}{\ =\ }\ -\lim_{x\to\infty}\ \frac {\ln x}{x}=-0\ .$ Remain to show $\lim_{x\to\infty}\ \frac {\ln x}{x}=0\ \ldots$



P12. $\{A,B,C\}\subset\mathrm M_3(R)\ \wedge\ \det A=\det B=\det C\ \wedge\ \det (A+iB)=\det (C+iA)$ $\Longrightarrow$ $\det (\mathrm A+\mathrm B)=\det (\mathrm C+\mathrm A)\ .$

Proof. Let $f(x)=\det (\mathrm{A+xB})-\det (\mathrm{C+xA})\ ,\ x\in\mathbb R\ .$ Observe that $f(0)=\underline{\det A-\det C=0}\ \ ,\ \underline{f(i)=0}\ .$ The polynomial $f$ has real coefficients and $\mathrm{gr} f\le 3\ .$ Thus,

$f(x)=kx\left(x^2+1\right)\ .$ Hence $k=\lim_{x\to\infty}\ \frac {f(x)}{x^3}=$ $\lim_{x\to\infty}\ \frac {1}{x^3}\cdot \left[\det (\mathrm{A+xB})-\det (\mathrm{C+xA})\right]=$ $\lim_{x\to\infty}\ \left[\det \left(\mathrm{\frac 1x A+B}\right)-\det \left(\mathrm{\frac 1xC+A}\right)\right]=$ $\underline{\det \mathrm B-\det \mathrm A=0}\ .$

In conclusion, $k=0$ , i.e. $f$ is the null polynomial. In particular, $f(1)=0$ , i.e. $\det (\mathrm A+\mathrm B)=\det (\mathrm C+\mathrm A)\ .$ I used $a\in\mathbb R\ \wedge\ A\in\mathrm M_n(R)$ $\Longrightarrow$ $\det\left(\mathrm{a\cdot A}\right)=a^n\cdot \det \mathrm A\ .$



P13. Gasiti $m\in\mathbb Q$ stiind ca $f(x)\equiv x^4  - 7x^3  + (13 + m)x^2  - (3 + 4m)x + m = 0$ admite radacinile $x_1  = 2 + \sqrt 3$ si $x_3$ , $x_4$ unde $x_3  = 2x_4\ \vee\ x_4  = 2x_3\ .$

Dem. Coeficientii ecuatiei date sunt rationali $\implies$ $x_2=2-\sqrt 3$ $\implies$ $\left\|\begin{array}{c}
 x_1=2+\sqrt 3\\\\
 x_2=2-\sqrt 3\end{array}\ \ \right\|\Longleftrightarrow$ $\left\|\begin{array}{c} 
 S=4\\\\
 P=1\end{array}\ \right\|$ $\Longleftrightarrow$ $\boxed{x^2-4x+1=0\ \begin{array}{cc}
 \nearrow & x_1\\\\
 \searrow & x_2\end{array}}\ .$ Relatia $x_3=2x_4\ \ \vee\ \ x_4=2x_3$

inseamna $\left(x_3-2x_4\right)\left(x_4-2x_3\right)=0\ \Longleftrightarrow\ 5P=2S_2\ \Longleftrightarrow\ 2S^2=9P\ \Longleftrightarrow$ exista $n\in\mathbb Q$ astfel incat $\left\|\ \begin{array}{c}
 S=9n\\\\
 P=18n^2\end{array}\ \right\|\ \Longleftrightarrow\ \boxed{x^2-9nx+18n^2=0\ \begin{array}{cc}
 \nearrow & x_3\\\\
 \searrow & x_4\end{array}}\ .$

Deci $X^4  - 7X^3  + (13 + m)X^2  - (3 + 4m)X + m \equiv\left(X^2-4X+1\right)\left(X^2-9nX+18n^2\right)$ $\Longleftrightarrow$ $\left\{\begin{array}{ccccc}
\mathrm{coeff.\ of} & x^3\ : & -7=-9n-4 & \iff & n=\frac 13\\\\
 \mathrm{coeff.\ of} & x^0\ : & m=18n^2 & \iff & m=2\end{array}\right\|\ .$

In concluzie, ecuatia devine $x^4-7x^3+15x^2-11x+2=\left(x^2-4x+1\right)\left(x^2-3x+2\right)\ \odot \begin{array}{cccc}
 \nearrow &  x_{1,2} & = & 2\pm\sqrt 3\\\\
 \rightarrow & x_3 & = & 1\\\\
\searrow & x_4 & = & 2\end{array}\ .$



P14. Sa se determine $m\in\mathbb R$ astfel incat intre radacinile $x_1$ si $x_2$ ale ecuatiei $x^2-(2m+1)x+(m+1)=0$ sa existe relatia $x_1^2=2x_2-3$ sau $x_2^2=2x_1-3\ .$

Metoda 1. Se observa ca $\left\{\begin{array}{ccccc}
S & = & x_1+x_2 & = & 2m+1\\\\
P & = & x_1x_2 & = & m+1\end{array}\right\|\ .$ Asadar, $x_1^2=2x_2-3$ sau $x_2^2=2x_1-3\iff$ $\left(x_1^2-2x_2+3\right)\left(x_2^2-2x_1+3\right)=0\iff$

$P^2-2S_3+3S_2+4P-6S+9=0\iff$ $P^2-2\left(S^3-3PS\right)+3\left(S^2-2P\right)+4P-6S+9=0\iff$ $2S^3-6PS-3S^2+6S-P^2+2P-9=0\iff$

$2(2m+1)^3-6(m+1)(2m+1)-3(2m+1)^2+6(2m+1)-(m+1)^2+2(m+1)-9=0\iff$ $16m^3-m^2-6m-9=0\iff$

$(m-1)\left(16m^2+15m+9\right)=0\iff$ $\boxed{\ m=1\ }$ si in acest caz radacinile ecuatiei date sunt $x_1=1$ , $x_2=2\ .$ Se observa ca $x_1^2=2x_2-3$ , adica $1^2=2\cdot 2-3\ .$

Metoda 2. $x_1^2-2x_2+3=0\iff$ $x_1^2-2(S-x_1)+3=0\iff$ $x_1^2+2x_1+(3-2S)=0\ .$ Asadar, ecuatiile $\left\{\begin{array}{ccccccc}
x^2 & - & Sx & + & P & = & 0\\\\
x^2 & + & 2x & + & (3-2S) & = & 0\end{array}\right\|$

au cel putin o radacina comuna. In concluzie, $\left|\begin{array}{cc}
1 & P\\\\
1 & 3-2S\end{array}\right|^2=\left|\begin{array}{cc}
1 & -S\\\\
1 & 2\end{array}\right|\cdot\left|\begin{array}{cc}
-S & P\\\\
2 & 3-2S\end{array}\right|\iff$ $(2S+P-3)^2=(S+2)\left(2S^2-3S-2P\right)\iff$

$25m^2=(2m+3)\left(8m^2-3\right)\iff$ $16m^3-m^2-6m-9=0\iff$ $(m-1)\left(16m^2+15m+9\right)=0\ \stackrel{(m\in\mathbb R)}{\iff}\ \boxed{\ m=1\ }\ .$

Metoda 3. $x_1^2-Sx_1+P=0\implies$ $x_1^2=Sx_1-P\implies$ $2x_2-3=Sx_1-P\implies$ $\left\{\begin{array}{ccccc}
Sx_1 & - & 2x_2 & = & P-3\\\\
x_1 & + & x_2 & = & S\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
(S+2)x_1 & = & 2S+P-3\\\\
(S+2)x_2 & = & S^2-P+3\end{array}\right\|\ \bigodot$ $\implies$

$P(S+2)^2=(2S+P-3)\left(S^2-P+3\right)\implies$ $2S^3-3S^2-6PS+6S-P^2+2P-9=0\implies$ $16m^3-m^2-6m-9=0\iff$ $\boxed{\ m=1\ }\ .$



P15. Aratati ca in orice $\triangle ABC$ are loc relatia $\sin ^2\ \frac{A-B}{2}+\sin \ A\sin \ B+\sin ^2\ \frac{C}{2}=1$ (ON 1980).

Comentariu. Obisnuiam sa spun elevilor mei ca oridecateori intalnesc un produs (in particular puteri !) de tipul $\sin x\sin y$, $\sin x\cos y$ sau $\cos x\cos y$ sa

inmulteasca cu doi relatia si sa aplice pachetul de formule care exprima asemenea produse printr-o suma de functii trigonometrice de acelasi tip, adica

$\boxed{\ \begin{array}{c}
 2\sin x\cos y=\sin (x+y)+\sin (x-y)\\\\
 2\sin x\sin y=\cos (x-y)-\cos (x+y)\\\\
 2\cos x\cos y=\cos (x+y)+\cos (x-y)\end{array}\ }\ \ \blacktriangleleft$ $\blacktriangleright\ \ \boxed{\ \begin{array}{cc}
2\sin^2 x=1-\cos 2x & 2\cos^2x=1+\cos 2x\\\\
 2\sin x\cos x=\sin 2x & \tan^2x=\frac {1-\cos 2x}{1+\cos 2x}\end{array}\ }\ \ \blacktriangleleft$ $\blacktriangleright\ \ \boxed{\begin{array}{c}
 \tan x=\frac {\sin 2x}{1+\cos 2x}=\frac {1-\cos 2x}{\sin 2x}\\\\
 \sin^2x-\sin^2y=\sin (x+y)\sin (x-y)\\\\
\sin^2x+\sin^2y+\cos (x+y)\cos (x-y)=1\end{array}}\ .$

Aplicam recomandarea exercitiului propus. Nu prea imi vine sa cred ca este de la ON - 1980. Nici pe vremea mea 1956-1960 (liceu) nu s-au dat asemenea probleme.

Metoda 1. $\boxed{\begin{array}{c}
 \sin ^2\ \frac{A-B}{2}+\sin A\sin B+\sin ^2\ \frac{C}{2}=1\\\\
 2\sin ^2\ \frac{A-B}{2}+2\sin A\sin B+2\sin ^2\ \frac{C}{2}=2\\\\
 \left[\underline 1-\underline{\underline{\cos (A-B)}}\right]+\left[\underline{\underline{\cos (A-B)}}-\underline{\underline{\underline{\cos (A+B)}}}\right]+\left[\underline 1-\underline{\underline{\underline{\cos C}}}\right]=\underline 2\end{array}}$ deoarece $(A+B)+C=\pi\ \Longrightarrow\ \cos (A+B)=-\cos C\ .$

Metoda 2. $\boxed{\begin{array}{c}
 \sin ^2\ \frac{A-B}{2}+\sin A\sin B+\sin ^2\ \frac{C}{2}=1\\\\
 \sin A\sin B=\sin^2\ \frac {A+B}{2}-\sin^2\ \frac {A-B}{2}\\\\
 \sin A\sin B=\sin\ \frac {(A+B)+(A-B)}{2}\ \sin\ \frac {(A+B)-(A-B)}{2}\end{array}}$ deoarece $\sin^2x-\sin^2y=\sin (x+y)\sin (x-y)$ si $\frac {A+B}{2}+\frac C2=\frac {\pi}{2}\ \Longrightarrow$ $\cos\frac C2=\sin\frac {A+B}{2}\ .$

Va propun sa retineti si sa dovediti $:\ \boxed{\begin{array}{c}
 p(p-a)+(p-b)(p-c)=bc\\\\
p(p-a)-(p-b)(p-c)=bc\cdot \cos A\end{array}}$ $\Longleftrightarrow$ $\boxed{\begin{array}{c}
2p(p-a)=bc(1+\cos A)\\\\
2(p-b)(p-c)=bc(1-\cos A)\end{array}}\ \stackrel{\pm}{\iff}\ \boxed{\begin{array}{c}
 \sin\frac A2=\sqrt {\frac {p-b)(p-c)}{bc}}\\\\
 \cos\frac A2=\sqrt {\frac {p(p-a)}{bc}}\\\\
 \tan\frac A2=\sqrt {\frac {(p-b)(p-c)}{p(p-a)}}\end{array}}\ .$

$\blacktriangleleft\blacktriangleright\ \boxed{\begin{array}{c}
 a=b\cdot\cos C+c\cdot \cos B\\\\
 b=c\cdot\cos A+a\cdot\cos C\\\\
 c=a\cdot\cos B+b\cdot\cos A\end{array}}\ \left|\begin{array}{cccc}
 \odot & (-a) & a & a\\\\
 \odot & b & (-b) & b\\\\
 \odot & c & c & (-c)\end{array}\right|\ \bigoplus\ \Longrightarrow\ \boxed{\begin{array}{c}
 -a^2+b^2+c^2=2bc\cdot\cos A\\\\
 a^2-b^2+c^2=2ca\cdot\cos B\\\\
 a^2+b^2-c^2=2ab\cdot\cos C\end{array}}\ .$



P16. Sa se construiasca media armonica a doua segmente date.

Demonstratie 1. Pe o dreapta $d$ asezam segmentele date astfel: $OA$ si $OB$ astfel incat $A\in (OB)\ .$ Pe o alta dreapta $d'$ care trece prin $O$ si este diferita de $d$ alegem

doua puncte $X$ , $Y$ simetrice fata de $O\ .$ Notam $Z\in AX\cap BY$ si construim punctul $T\in d'$ astfel incat $TZ\parallel d\ .$ Se arata usor ca $\frac 1{OA}+\frac 1{OB}=\frac 2{TZ}\ .$ Intr-adevar,

$TZ\parallel d\implies\odot \begin{array}{cccc}
\nearrow & \triangle ZXT\ : & \frac {TZ}{OA}=\frac {XT}{XO} & \searrow\\\\
\searrow & \triangle OYB\ : & \frac {TZ}{OB}=\frac {YT}{YO} & \nearrow\end{array}\bigoplus\implies$ $\frac {TZ}{OA}+\frac {TZ}{OB}=\frac {XT}{XO}+$ $\frac {YT}{YO}\ \stackrel{OX=OY}{\implies}\ TZ\cdot$ $\left(\frac 1{OA}+\frac 1{OB}\right)=\frac {XY}{OX}=2 \implies$ $\boxed{\frac 1{OA}+\frac 1{OB}=\frac 2{TZ}}\ (1)\ .$

Demonstratie 2. Fie $:\ ABCD$ cu $AB\parallel CD\ ,\ I\in AC\cap BD\ ;\ X\in AD$ , $Y\in BC$ astfel incat $I\in XY$ si $XY\parallel AB\ .$ Se arata usor $IX=IY$ si $\boxed{\frac 1{AB}+\frac 1{CD}=\frac 2{XY}}\ (2)$


See and here

P17. Let $\triangle ABC$ with the circumcircle $w\ .$ Denote $P\in AA\cap CC$ and $\{B,D\} = PB\cap w\ .$ Prove that $\frac {DB}{DC} = 2\frac {AB}{AC}\ .$ Denote $XX$ - the tangent line to $w$ at $X\in w\ .$

Proof. I"ll use the Ptolemy's theorem $:\ \boxed{BD\cdot b=AD\cdot a+DC\cdot c}\ (1)\ .$ Observe that $\left\{\begin{array}{cccc}
\triangle ADP\sim\triangle BAP & \implies & \frac {AD}c=\frac {AP}{BP} & (2)\\\\
\triangle CDP\sim\triangle BCP & \implies & \frac {CD}a=\frac {CP}{BP} & (3)\end{array}\right\|\ \stackrel{1\wedge 2\wedge 3}{\implies}$

$\frac {b\cdot BD}{ac}=\frac {AD}c+\frac {DC}a=$ $\frac {AP}{BP}+\frac {CP}{BP}=$ $2\cdot \frac {CP}{BP}=$ $2\cdot \frac {CD}a\implies$ $\frac {b\cdot BD}{ac}=2\cdot \frac {CD}a\implies$ $\frac {DB}{DC}= 2\cdot \frac {AB}{AC}\ .$



P18. Se considera paralelogramele $ABCD$ si $XYZT$ (situate in acelasi plan). Sa se arate ca mijloacele segmentelor $[AX]$ , $[BY]$ , $[CZ]$ , $[DT]$ sunt varfurile unui paralelogram.

Demonstratie. Fie mijloacele $M$ , $N$ , $P$ , $R$ ale segmentelor $[AX]$ , $[BY]$ , $[CZ]$ , $[DT]$ respectiv si $U\in AC\cap BD$ , $V\in XZ\cap YT$ . Vom folosi o proprietate cunoscuta sau usor

de dovedit $:$ intr-un patrupunct (nu neaparat in plan sau daca-i in plan, nu neaparat convex !) bimedianele au mijlocul comun. Astfel pentru patrupunctele $ACZX$ , $BDYT$ se observa ca

segmentele $[MP]$ , $[NR]$ , $[UV]$ au acelasi mijloc. In particular segmentele $[MP]$ , $[NR]$ se taie in segmente egale ceea ce inseamna ca patrulaterul $MNPR$ este un paralelogram.



P19. Denote $2s=a+b+c\ .$ Prove that $D\equiv \left|\begin{array}{ccccc}
(b-c)(s-a) & & a(s-b) & & a(s-c)\\\\
(c-a)(s-b) & & b(s-c) & & b(s-a)\\\\
(a-b)(s-c) & & c(s-a) & & c(s-b)\end{array}\right|=\frac 14\cdot (a-b)(b-c)(c-a)(a+b+c)\left(a^2+b^2+c^2\right)\ .$

Proof. Inmultim fiecare linie a determinantului cu $2\ ($ implicit impartim $D$ prin $8\ )\ :\ D=\frac 18\ \cdot\left|\begin{array}{ccc}
(b-c)(b+c-a) & a(c+a-b) & a(a+b-c) \\\\ 
(c-a)(c+a-b) & b(a+b-c) & b(b+c-a) \\\\
(a-b)(a+b-c) & c(b+c-a) & c(c+a-b)\end{array}\right|$

$\odot\ \boxed{C_1:=C_1-C_2+C_3}\Longrightarrow$ $D=\frac 18\cdot\left|\begin{array}{ccc}
(b-c)(a+b+c) & a(c+a-b) & a(a+b-c) \\\\
(c-a)(a+b+c) & b(a+b-c) & b(b+c-a) \\\\
(a-b)(a+b+c) & c(b+c-a) & c(c+a-b)\end{array}\right|=$ $\frac {a+b+c}8\cdot\left|\begin{array}{ccc}
b-c & a(c+a-b) & a(a+b-c) \\\\
c-a & b(a+b-c) & b(b+c-a) \\\\ 
a-b & c(b+c-a) & c(c+a-b)\end{array}\right|$

$\odot\left\{\begin{array}{cc}
(1) & \boxed{C_3:=C_3-C_2} \\\\
(2) & \boxed{L_1:=L_1+L_2+L_3}\end{array}\right\|\ \stackrel{(1)}{\Longrightarrow}\ \ D=$ $\frac {a+b+c}8\ \cdot\left|\begin{array}{ccc}
b-c & a(c+a-b) & 2a(b-c) \\\\ 
c-a & b(a+b-c) & 2b(c-a) \\\\ 
a-b & c(b+c-a) & 2c(a-b)\end{array}\right|\ \stackrel{(2)}{=}$ $\frac {a+b+c}8\ \cdot\left|
\begin{array}{ccc}
0 & a^2+b^2+c^2 & 0 \\\\
c-a & b(a+b-c) & 2b(c-a) \\\\ 
a-b & c(b+c-a) & 2c(a-b)\end{array}\right|$ $\Longrightarrow$

$D=\frac {a+b+c}8\cdot\left(a^2+b^2+c^2\right)\cdot\left|\begin{array}{cc}
a-c & 2b(a-c) \\\\
a-b & 2c(a-b)\end{array}\right|=\boxed{\frac 14\cdot (a-b)(b-c)(c-a)(a+b+c)\left(a^2+b^2+c^2\right)}\ .$ See
here another determinants.


P20. Let two fixed $A\ ,$ $B\ $ and a circle $w=\mathbb C(O,r)$ where $O\in (AB)\ .$ Find $\max_{P\in w}(PA+PB)\ ,$ where $P\in w\ .$

Proof. Denote $OA=a\ ,$ $OB=b$ and apply the Stewart's relation to the cevian $PO/\triangle APB\ :\ \boxed{b\cdot PA^2+a\cdot PB^2=\left(r^2+ab\right)(a+b)}\ (*)\ .$ Therefore,

$ (PA+PB)^2=$ $\left(PA\sqrt b\cdot \frac 1{\sqrt b}+PB\sqrt a\cdot\frac 1{\sqrt a}\right)^2\ \stackrel{\mathrm{C.B.S.}}{\le}\ \left(b\cdot PA^2+a\cdot PB^2\right)\left(\frac 1b+\frac 1a\right)\ \stackrel{(*)}{=}\ \left(r^2+ab\right)(a+b)\cdot\frac {a+b}{ab}$ $\implies$ $\boxed{PA+PB\le (a+b)\cdot\sqrt{1+\frac {r^2}{ab}}}\ .$

We have the equality $\iff$ $\frac {PA\sqrt b}{\frac 1{\sqrt b}}=\frac {PB\sqrt a}{\frac 1{\sqrt a}}\iff$ $b\cdot PA=a\cdot PB\iff$ $\frac {PA}a=\frac {PB}b\ ,$ i.e. the ray $[PO$ is the bisector of the angle $\widehat{APB}\ .$



P21. Let $\triangle ABC$ with the circumcircle $w=\mathbb C(O,R)$ and its interior point $P$ so that $\left\{\begin{array}{ccc}\widehat{PAB} & \equiv & \widehat{PCA}\\\\ 
\widehat{PAC} & \equiv & \widehat{PBA}\end{array}\right\|\ .$ Prove that $:\ \left\{\begin{array}{cccc}
PA^2 & = & PB\cdot PC & (1)\\\\
\frac {PB}{PC} & = & \left(\frac{AB}{AC}\right)^2 & (2)\\\\
OP & = & R\cdot \frac{|PB-PC|}{BC} & (3)\end{array}\right\|\ .$

Proof. $\triangle ABP\sim\triangle CAP\iff$ $\frac {AB}{CA}=\frac {BP}{AP}=\frac {AP}{CP}\iff$ $\frac {AB}{CA}=\frac {BP}{AP}=\frac {AP}{CP}\implies\odot \begin{array}{cccccc}
\nearrow & \frac {BP}{AP}=\frac {AP}{CP} & \implies & PA^2=PB\cdot PC & \implies & (1)\\\\
\searrow & \begin{array}{ccc}
\nearrow & \frac {PB}{PA}=\frac {AB}{CA} & \searrow\\\\
\searrow &  \frac {PA}{PC}=\frac {AB}{CA} & \nearrow\end{array}\bigodot & \implies & \frac {PB}{PC}=\left(\frac{AB}{AC}\right)^2 & \implies & (2)\end{array}$

Suppose w.l.o.g. that $OM$ separates $P\ ,$ $C\ ,$ where $M$ is the midpoint of $[BC]\ .$ Observe that $m\left(\widehat{BPC}\right)=2A\ ,$ i.e. $\widehat{BPC}\equiv\widehat{BOC}\iff$ $BPOC$

is cyclic. Apply the Ptolemy's relation to $BPOC\ :\ BC\cdot OP+PB\cdot OC=PC\cdot OB\iff$ $BC\cdot OP=R\cdot |PC-PB|\ ,$ i.e. the relation $(3)\ .$



P22. Let $A$- right $\triangle ABC\ ,$ $D\in (AC)$ so that $m\left(\widehat{ABD}\right)=C$ and $E\in BC$ so that $DE\perp BC\ .$ Prove that $AE=c\ .$

Proof. Observe that $\triangle ADB\sim\triangle ABC\implies$ $\frac {AD}{c}=\frac {DB}{a}=\frac cb$ $\implies$ $\left\|\begin{array}{c}
AD=\frac {c^2}{b}\\\\
BD=\frac {ac}{b}\end{array}\right\|$ $\implies$ $CD=AC-AD=b-\frac {c^2}{b}$ $\implies$ $CD=\frac {b^2-c^2}{b}\ .$ $\triangle CDE\sim\triangle CBA$

$\implies$ $\frac {CD}{a}=\frac {DE}{c}=\frac {CE}{b}$ $\implies$ $\left\|\begin{array}{c}
DE=\frac ca\cdot CD\\\\
CE=\frac ba\cdot CD\end{array}\right\|$ $\implies$ $\left\|\begin{array}{ccc}
DE=\frac ca\cdot \frac {b^2-c^2}{b} & \implies & DE=\frac {c\left(b^2-c^2\right)}{ab}\\\\
CE=\frac ba\cdot \frac {b^2-c^2}{b} & \implies & CE=\frac {b^2-c^2}{a}\end{array}\right\|$ $\implies$ $BE=BC-EC=a-\frac {b^2-c^2}{a}\implies BE=\frac {2c^2}{a}\ .$ Apply

Ptolemy's theorem to $ABED\ :\ AB\cdot DE+$ $AD\cdot BE=BD\cdot AE\iff$ $c\cdot \frac {c\left(b^2-c^2\right)}{ab}+\frac {c^2}{b}\cdot\frac {2c^2}{a}=\frac {ac}{b}\cdot AE\iff$ $c^2\left(b^2-c^2\right)+2c^4=a^2c\cdot AE\iff$ $\boxed{AE=c}$

Remark. $m(\widehat{ABD})=C\implies\Delta ADB\sim\Delta ABC\iff m(\widehat{ADB})=B\ .$ Also, $DE\bot BC\wedge AB\bot AC\implies ABED$ cyclic $\implies$ $\widehat{AEB}\equiv\widehat{ADB}\equiv\widehat{ADB}$ $\implies AE=c\ .$



P23. Dacă $\{a, b, c\}\subset\mathbb R^*\ ,$ $a+b+c=0$ si $a^3+b^3+c^3=a^5+b^5+c^5\ ,$ atunci $a^2+b^2+c^2=\frac{6}{5}\ .$

Demonstratie. Fie ecuatia $x^3+mx+n=0$ ale carei radacini sunt $\{a,b,c\}\ .$ Deci $\left\{\begin{array}{c}
s_2=ab+bc+ca=m\\\\
s_3=abc=-n\ne 0\end{array}\right|\ .$ Notam $S_k=a^k+b^k+c^k\ ,$ unde $k\in\mathbb N\ .$

Prin urmare, $S_0=3\ ,$ $S_1=0\ ,$ $S_2=-2m$ si pentru orice $k\in\mathbb N$ avem $S_{k+3}=-mS_{k+1}-nS_k\ .$ Se obtine usor succesiv $S_3=-3n\ ,$ $S_4=2m^2$ si $S_5=5mn\ .$

Relatia din ipoteza $S_3=S_5$ inseamna $-3n=5mn\ ,$ adica $m=-\frac 35$ deoarece $n\ne 0\ .$ In concluzie, $S_2=-2m\ ,$ adica $a^2+b^2+c^2=\frac 65\ .$



P24. Fie $ABCDEF$ un hexagon inscris intr-un cerc. Notam $M\in AC\cap BD\ ,$ $N\in BE\cap CF$ si $P\in AE\cap DF\ .$ Aratati ca $P\in MN\ .$

Proof. Apply the Pascal's theorem to the cyclical hexagon $ACFDBE\ :\ \begin{array}{c}\nearrow\\\\
\rightarrow\\\\
\searrow\end{array}\begin{array}{c}
M\in AC\cap DB\\\\
N\in CF\cap BE\\\\
P\in FD\cap EA\end{array}\begin{array}{c}\searrow\\\\
\rightarrow\\\\
\nearrow\end{array}\ \implies\  P\in MN\ .$


P25. Fie $ABCD$ un trapez in care $AB\parallel CD$. Notam punctul $P$ de intersectie al bisectoarelor exterioare ale unghiurilor $\widehat{ABC}$, $\widehat{BCD}$ si punctul

$Q$ de intersectie al bisectoarelor exterioare ale unghiurilor $\widehat{ADC}$, $\widehat{DAB}$. Sa se arate ca $\boxed{2\cdot PQ=AB+BC+CD+DA}\ .$ (OMN, Mexic).


Dem. Se arata usor ca $\left\{\begin{array}{ccc}
\delta_{AB}(G)=\delta_{AD}(G)=\delta_{CD}(G) & \implies & G\in EF\\\\
\delta_{AB}(P)=\delta_{BC}(P)=\delta_{CD}(P) & \implies & P\in EF\end{array}\right\|$ unde am notat $\delta_{XY}(Z)$ - distanta punctului $Z$ la dreapta $XY$.

Asadar punctele $P$, $Q$ apartin liniei mijlocii $EF$ a trapezului dat, unde $E\in AD$ si $F\in BC$. Deoarece $GA\perp GD$ si $PB\perp PC$ obtinem ca

$AB+BC+CD+DA=$ $(AB+CD)+AD+BC=$ $2\cdot EF+2\cdot GE+2\cdot PF=$ $2\cdot (EF+GE+PF)=2\cdot PQ.$



P26. Let $A$-isosceles $\triangle ABC$ with $AB=AC=a$ and $BC=b.$ Prove that $\boxed{A=140^{\circ}\iff b^3=a^3+3a^2b}\ .$

Proof. Denote the midpoint $M$ of the side $[BC].$ Observe that $A=140^{\circ}\iff B=20^{\circ}\iff$ $\cos 20^{\circ}=\cos B=\frac {AM}{BM}=\frac b{2a}\iff$ $\boxed{\cos 20^{\circ}=\frac b{2a}}\ (1).$

I"ll use the identity $\boxed{\cos 2x=2\cos^2x-1}\ (*)$ for $x=20^{\circ}\ :\ \cos 40^{\circ}=2\cdot \left(\frac b{2a}\right)^2-1=\frac {b^2}{2a^2}-1=\frac {b^2-2a^2}{2a^2}\iff$ $\boxed{\cos 40^{\circ}=\frac {b^2-2a^2}{2a^2}}\ (2).$

I"ll apply the identity $\boxed{2\cos x\cos y=\cos (x+y)\cos (x-y)}\ (**)$ for $x=20^{\circ}$ and $y=\cos 40^{\circ}\ :\ 2\cos 20^{\circ}\cdot \cos 40^{\circ}=\cos 60^{\circ}+\cos 20^{\circ}\iff$

$\frac ba\cdot \frac {b^2-2a^2}{\cancel 2a^2}=\frac 1{\cancel 2}+\frac b{\cancel 2a}\iff$ $\frac {b\left(b^2-2a^2\right)}{\cancel a\cdot a^2}=\frac {a+b}{\cancel a}\iff$ $b\left(b^2-2a^2\right)=a^2(a+b)\iff$ $b^3=a^3+3a^2b.$



P27. Let an acute $\triangle ABC$ with the Euler's circle $w$ and $\{X,Y,Z\}\subset w$ so that $A\in XX,$ $B\in YY$ and $C\in ZZ.$ Prove that $AX^2+BY^2+CZ^2=\frac 14\cdot\left(a^2+b^2+c^2\right).$

Proof. Let the midpoints $M,$ $N,$ $P$ of the sides $[BC],$ $[CA],$ $[AB]$ and the projections $D,$ $E,$ $F$ of $A,$ $B,$ $C$ on the same sides respectively. Is well known that $\{M,N,P;D,E,F\}\subset w.$

I"ll use the power $p_w(X)$ of $X$ w.r.t. a given circle $w.$ Thus, $AX^2=p_w(A)=$ $AP\cdot AF=\frac c2\cdot b\cos A=$ $\frac {2bc\cos A}4=$ $\frac 14\cdot\left(b^2+c^2-a^2\right)\implies$ $\boxed{4\cdot AX^2=b^2+c^2-a^2}\ .$

Obtain analogously $4\cdot BY^2=c^2+a^2-b^2$ and $4\cdot CZ^2=a^2+b^2-c^2.$ In conclusion, $AX^2+BY^2+CZ^2=\frac 14\cdot\left(a^2+b^2+c^2\right).$



P28 (Ruben Auqui). Let a square $ABCD$ with $AB=r$ and the circle $w=\mathbb C(A,r).$ For an interior $P$ of the square and which belongs to $w$ consider

$R\in BP\cap CD$ and $m\left(\widehat{CDP}\right)=\alpha,$ $m\left(\widehat{CPD}\right)=\beta .$ Prove that $\cot\alpha +\cot\beta=2$ and $PC=2\cdot PR\iff$ $R$ is the midpoint of $[CD].$



Proof. Prove easily that $\left\{\begin{array}{ccc}
m\left(\widehat{BPC}\right) & = & 225^{\circ}-\beta\\\
m\left(\widehat{CBP}\right) & = & 45^{\circ}-\alpha\end{array}\right\|\ .$ Apply the theorem of Sines in $:\  \left\{\begin{array}{cccc}
\triangle CPD\ : & \frac {PC}{\sin \widehat{CDP}}=\frac {CD}{\sin \widehat{CPD}} & \iff & \frac {PC}{\sin\alpha}=\frac r{\sin\beta}\\\\
\triangle CPB\ : & \frac {PC}{\sin \widehat{CBP}}=\frac {BC}{\sin \widehat{BPC}} & \iff & \frac {PC}{\sin\left(45^{\circ}-\alpha\right)}=\frac r{\sin\left(\beta -45^{\circ}\right)}
\end{array}\right\|\implies$

$\frac {\sin\alpha}{\sin\left(45^{\circ}-\alpha\right)}=\frac {\sin\beta}{\sin\left(\beta -45^{\circ}\right)}\iff$ $\frac{\tan\alpha}{1-\tan\alpha}=\frac {\tan\beta}{\tan\beta -1}\iff$ $\tan\alpha +\tan\beta =2\tan\alpha\tan\beta\iff$ $\boxed{\cot\alpha +\cot\beta =2}\iff$ $\sin\left(\alpha +\beta\right)=2\sin\alpha\sin\beta\ .$



P29. Let $\triangle ABC$ with $A=70^{\circ}$ and $B=30^{\circ}.$ Prove that $\boxed{a^3=b^3+3ab^2}\ .$

Proof 1 (trigonometric). Denote $\boxed{t=\frac ab}\ (*)$ Therefore, $t=\frac {\sin A}{\sin B},$ i.e. $\boxed{t=2\cos 20^{\circ}}\ (1)$ and $a^3=b^3+3ab^2\iff$ $t^3=3t+1\ \stackrel{(1)}{\iff}\ 8\cos ^320^{\circ}=6\cos 20^{\circ}+1\iff$

$4\cos 20^{\circ}(1+\cos 40^{\circ})=6\cos 20^{\circ}+1\iff$ $4\cos 20\cos 40^{\circ}=1+2\cos 20^{\circ}\iff$ $2(\cos 60^{\circ}+\cos 20^{\circ})=1+2\cos 20^{\circ},$ what is true. See and proposed upperly
P26.

Proof 2 ("slicing").


P30. Let $z=a+bi\in\mathbb C$, where $\{a,b\}\subset\mathbb N^*$. Find the smallest possible value of $a+b$ for which $z+z^2+z^3\in \mathbb R$.

Proof. $z\not\in\mathbb R$ , i.e. $z\ne \overline z$ . Thus, $z+\overline z=2a$, $z\overline z=a^2+b^2$, $z^2+\overline z^2=(z+\overline z)^2-2z\overline z=$ $2\left(a^2-b^2\right).$ Thus, $z+z^2+z^3\in \mathbb R\iff$ $z+z^2+z^3=\overline z+\overline z^2+\overline z^3\iff$

$1+\left(z+\overline z\right)+\left(z^2+z\overline z+\overline z^2\right)=0\iff$ $1+2a+2\left(a^2-b^2\right)+\left(a^2+b^2\right)=0\iff$ $\boxed{3a^2+2a+1=b^2}\ ,$ i.e. the smallest positive integer $a$ for which $3a^2+2a+1$

is a positive integer. Found $a=6$, i.e. $a=6$ and $b=11$ . In conclusion, the required sum $a+b$ is equal to $17$.
This post has been edited 470 times. Last edited by Virgil Nicula, Feb 19, 2018, 8:29 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a