442. Problems from and for baccalaureate II.
by Virgil Nicula, Apr 14, 2016, 4:15 PM
P1. Find the distance between the lines
in the analytical space.
Proof 1.
,
where
I"ll search
, where
. Hence
and
, where
.
Observe that
and
. In conclusion,
, i.e.
.
Remark.
the equation of
is
is surjective.
Verify:
and
.
Proof 2. The equation of the plane
for which
is
.
Choose the point
and calculate the distance

Proof 3. I"ll use the well-known property
. If the "slope" of
the required
is
, then

the equation of the plane
for which
is
a.s.o.
P2. Fie planul
care sectioneaza muchiile tetraedrului
in punctele interioare
si in punctele exterioare
. Sa se afle relatiile intre
si raportul in care planul
imparte volumul
al tetraedrului
.
Dem.. Aplicam teorema Menelaus la
Asadar,
. In concluzie,
,
.
Caz particular. Daca
, atunci
si
, adica punctele
si
sunt mijloacele muchiilor opuse
si
.Se obtine
usor ca
, adica
.
P3. Study if the system
has real solutions, where
.
Proof.

where
. In conclusion,
i.e.
and in this case for
we have 
P4. Solve the system of equations in real numbers
, where
and 
Proof.

Since
obtain that
. Therefore,
. Hence the equations
have at least a common root
.
So
![$3y^2\left[6y^2-(2a+b)\right]+9y^4+6(a-b)y^2+(a-b)^2=0$](//latex.artofproblemsolving.com/8/d/e/8deb37164db0d242d7c31e4dd417642d53395123.png)
a.s.o. Particular case.
. Thus,
becomes
.
In conclusion,

and
a.s.o.
P5. Find the complex numbers
for which
.
Proof 1.
![$\Re (z)\cdot\left[\Im (z)+1\right]=0\implies$](//latex.artofproblemsolving.com/2/1/6/2163cb72ee4e6727b01b90d0055d55195433037e.png)

Proof 2.
.
P6. Find the range
of the function
, where 
Proof.
the function
is increasing
and
. Now suppose that
. Thus,

what is truly. So
and
See here.
P7. Find the maximum of the expression
where
and
.
Proof.

P8. Prove that for any
there is the chain 
Proof. The inequalities
and
are well known. Thus, 

Remark. The chain of the inequalities
is well-known.
P9. Prove that
and solve the equation 
P10. Let the equation
Solve the equation 
Proof. Observe that (Viete's relations)
Hence


P11. Find
Proof.
where 
In conclusion, 
Remark. I used an wel known limit
Here is an its proof. I used the substitution 
because
Remain to show 
P12.

Proof. Let
Observe that
The polynomial
has real coefficients and
Thus,
Hence

In conclusion,
, i.e.
is the null polynomial. In particular,
, i.e.
I used

P13. Gasiti
stiind ca
admite radacinile
si
,
unde 
Dem. Coeficientii ecuatiei date sunt rationali
Relatia 
inseamna
exista
astfel incat 
Deci

In concluzie, ecuatia devine
P14. Sa se determine
astfel incat intre radacinile
si
ale ecuatiei
sa existe relatia
sau
Metoda 1. Se observa ca
Asadar,
sau



si in acest caz radacinile ecuatiei date sunt
,
Se observa ca
, adica 
Metoda 2.
Asadar, ecuatiile 
au cel putin o radacina comuna. In concluzie,


Metoda 3.


P15. Aratati ca in orice
are loc relatia
(ON 1980).
Comentariu. Obisnuiam sa spun elevilor mei ca oridecateori intalnesc un produs (in particular puteri !) de tipul
,
sau
sa
inmulteasca cu doi relatia si sa aplice pachetul de formule care exprima asemenea produse printr-o suma de functii trigonometrice de acelasi tip, adica

Aplicam recomandarea exercitiului propus. Nu prea imi vine sa cred ca este de la ON - 1980. Nici pe vremea mea 1956-1960 (liceu) nu s-au dat asemenea probleme.
Metoda 1.
deoarece 
Metoda 2.
deoarece
si

Va propun sa retineti si sa dovediti


P16. Sa se construiasca media armonica a doua segmente date.
Demonstratie 1. Pe o dreapta
asezam segmentele date astfel:
si
astfel incat
Pe o alta dreapta
care trece prin
si este diferita de
alegem
doua puncte
,
simetrice fata de
Notam
si construim punctul
astfel incat
Se arata usor ca
Intr-adevar,

Demonstratie 2. Fie
cu
,
astfel incat
si
Se arata usor
si
See and here
P17. Let
with the circumcircle
Denote
and
Prove that
Denote
- the tangent line to
at 
Proof. I"ll use the Ptolemy's theorem
Observe that 

P18. Se considera paralelogramele
si
(situate in acelasi plan). Sa se arate ca mijloacele segmentelor
,
,
,
sunt varfurile unui paralelogram.
Demonstratie. Fie mijloacele
,
,
,
ale segmentelor
,
,
,
respectiv si
,
. Vom folosi o proprietate cunoscuta sau usor
de dovedit
intr-un patrupunct (nu neaparat in plan sau daca-i in plan, nu neaparat convex !) bimedianele au mijlocul comun. Astfel pentru patrupunctele
,
se observa ca
segmentele
,
,
au acelasi mijloc. In particular segmentele
,
se taie in segmente egale ceea ce inseamna ca patrulaterul
este un paralelogram.
P19. Denote
Prove that 
Proof. Inmultim fiecare linie a determinantului cu
implicit impartim
prin 


See here another determinants.
P20. Let two fixed
and a circle
where
Find
where 
Proof. Denote
and apply the Stewart's relation to the cevian
Therefore,

We have the equality
i.e. the ray
is the bisector of the angle 
P21. Let
with the circumcircle
and its interior point
so that
Prove that 
Proof.

Suppose w.l.o.g. that
separates
where
is the midpoint of
Observe that
i.e.

is cyclic. Apply the Ptolemy's relation to
i.e. the relation
P22. Let
- right
so that
and
so that
Prove that 
Proof. Observe that

Apply
Ptolemy's theorem to

Remark.
Also,
cyclic

P23. Dacă
si
atunci 
Demonstratie. Fie ecuatia
ale carei radacini sunt
Deci
Notam
unde 
Prin urmare,
si pentru orice
avem
Se obtine usor succesiv
si 
Relatia din ipoteza
inseamna
adica
deoarece
In concluzie,
adica 
P24. Fie
un hexagon inscris intr-un cerc. Notam
si
Aratati ca 
Proof. Apply the Pascal's theorem to the cyclical hexagon
P25. Fie
un trapez in care
. Notam punctul
de intersectie al bisectoarelor exterioare ale unghiurilor
,
si punctul
de intersectie al bisectoarelor exterioare ale unghiurilor
,
. Sa se arate ca
(OMN, Mexic).
Dem. Se arata usor ca
unde am notat
- distanta punctului
la dreapta
.
Asadar punctele
,
apartin liniei mijlocii
a trapezului dat, unde
si
. Deoarece
si
obtinem ca

P26. Let
-isosceles
with
and
Prove that
Proof. Denote the midpoint
of the side
Observe that

I"ll use the identity
for

I"ll apply the identity
for
and 

P27. Let an acute
with the Euler's circle
and
so that
and
Prove that 
Proof. Let the midpoints
of the sides
and the projections
of
on the same sides respectively. Is well known that 
I"ll use the power
of
w.r.t. a given circle
Thus,

Obtain analogously
and
In conclusion, 
P28 (Ruben Auqui). Let a square
with
and the circle
For an interior
of the square and which belongs to
consider
and
Prove that
and
is the midpoint of ![$[CD].$](//latex.artofproblemsolving.com/4/6/7/4679d35607e9ff3c1a6b07dcd6521e73fcc70246.png)
Proof. Prove easily that
Apply the theorem of Sines in 

P29. Let
with
and
Prove that 
Proof 1 (trigonometric). Denote
Therefore,
i.e.
and

what is true. See and proposed upperly P26.
Proof 2 ("slicing").
P30. Let
, where
. Find the smallest possible value of
for which
.
Proof.
, i.e.
. Thus,
,
,
Thus,

i.e. the smallest positive integer
for which 
is a positive integer. Found
, i.e.
and
. In conclusion, the required sum
is equal to
.

Proof 1.


![$MN^2=(2m-3n+2)^2+(3m-4n-1)^2+(m-3n-1)^2=2[f(m,n)+3]$](http://latex.artofproblemsolving.com/e/0/2/e0285aad179c69215ff0c165d7d52b99d02ccf0f.png)
where







Observe that




Remark.





Verify:



Proof 2. The equation of the plane




Choose the point



Proof 3. I"ll use the well-known property


the required











P2. Fie planul








Dem.. Aplicam teorema Menelaus la

Asadar,




![$\left\{\begin{array}{c}
\frac {v[RAMQ]}{v[ABCD]}=\frac {[AMQ]\cdot\delta_{ABD}(R)}{[ABD]\cdot\delta_{ABD}(C)}=\frac {[AMQ]}{[ABD]}\cdot\frac {\delta_{ABD}(R)}{\delta_{ABD}(C)}=\frac {AM}{AB}\cdot\frac {AQ}{AD}\cdot\frac {RA}{CA}=\frac m{m+1}\cdot \frac 1{q+1}\cdot \frac 1{1-r}\\\\
\frac {v[RCNP]}{v[ABCD]}=\frac {[CNP]\cdot\delta_{BCD}(R)}{[BCD]\cdot\delta_{BCD}(A)}=\frac {[CNP]}{[CBD]}\cdot\frac {\delta_{BCD}(R)}{\delta_{BCD}(A)}=\frac {CN}{CB}\cdot\frac {CP}{CD}\cdot\frac {RC}{CA}=\frac 1{n+1}\cdot \frac p{p+1}\cdot \frac r{1-r}\end{array}\right\|$](http://latex.artofproblemsolving.com/3/4/1/3414b76af1c759c923d1987ba92801a6c4ff735b.png)
![$\frac {v[ACMNPQ]}{v[ABCD]}=\frac {v[RAMQ]}{v[ABCD]}-\frac {v[RCNP]}{v[ABCD]}=$](http://latex.artofproblemsolving.com/3/c/7/3c764f9ce60af5112a5dd7c2167bbd33736d247e.png)


![$\frac 1{1-r}\cdot \left[\frac m{(m+1)(q+1)}-\frac {pr}{(n+1)(p+1)}\right]=f(m,n,p,q)$](http://latex.artofproblemsolving.com/2/d/c/2dc03a487a2dd8383126680f62e303b6038c49d3.png)

Caz particular. Daca





![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)
![$[CD]$](http://latex.artofproblemsolving.com/e/7/0/e70960e9e5738a46ad23f794e796ef3cb4ad7e2c.png)
usor ca
![$\frac {v[ACMNPQ]}{v[ABCD]}=\frac 1{1-q}\cdot\left[\frac 1{2(q+1)}-\frac {q^2}{2(q+1)}\right]=\frac {1-q^2}{2(1-q)(1+q)}=\frac 12$](http://latex.artofproblemsolving.com/0/7/7/077edbdb02888ee7c2ffef06dbf1fd6ef30e49a5.png)
![$2\cdot v[ACMNPQ]=v[ABCD]$](http://latex.artofproblemsolving.com/c/1/5/c156e62a9a29bf5fc032b027bbd3a87623bf9d7b.png)
P3. Study if the system


Proof.














P4. Solve the system of equations in real numbers



Proof.










So

![$3y^2\cdot \left|\begin{array}{cc}
-2 & 4y^2-b\\\\
1 & y^2-a\end{array}\right|=\left[3y^2+(a-b)^2\right]^2$](http://latex.artofproblemsolving.com/7/5/e/75eba1e54e5d79178b3b10352fbad2d44a87ff51.png)

![$3y^2\left[6y^2-(2a+b)\right]+9y^4+6(a-b)y^2+(a-b)^2=0$](http://latex.artofproblemsolving.com/8/d/e/8deb37164db0d242d7c31e4dd417642d53395123.png)






In conclusion,




P5. Find the complex numbers


Proof 1.




![$2\Re(z)\cdot\left[2\mathrm i\Im (z) +2\mathrm i\right]=0\implies$](http://latex.artofproblemsolving.com/d/5/b/d5b7c395d50719c2ea02e97b45a7f0554c2f5504.png)
![$\Re (z)\cdot\left[\Im (z)+1\right]=0\implies$](http://latex.artofproblemsolving.com/2/1/6/2163cb72ee4e6727b01b90d0055d55195433037e.png)

Proof 2.






P6. Find the range



Proof.












P7. Find the maximum of the expression



Proof.
![$(2x+y-z)^2=\left[2\cdot x+\frac 1{\sqrt 3}\cdot y\sqrt 3+(-1)\cdot z\right]^2\ \stackrel{(C.B.S)}{\le}\ \left[2^2+\left(\frac 1{\sqrt 3}\right)^2+(-1)^2\right]$](http://latex.artofproblemsolving.com/6/3/0/6304b0876a6adf4fc27677f229a60def63348627.png)
![$\cdot\left[x^2+\left(y\sqrt 3\right)^2+z^2\right]=$](http://latex.artofproblemsolving.com/7/7/2/7724f5c2fe8a3ecf134e80a4c0fa9add46d694c5.png)



P8. Prove that for any


Proof. The inequalities





Remark. The chain of the inequalities



P9. Prove that


P10. Let the equation


Proof. Observe that (Viete's relations)







P11. Find

Proof.


![$\lim_{x\to 0}\ \left[\frac {1+\ln x}{1+x\ln x}-(1+\ln x)\right]=-\lim_{x\to 0}\ \frac {x\ln x(1+\ln x)}{1+x\ln x}=0\ .$](http://latex.artofproblemsolving.com/1/c/2/1c297254742b9cbdae3e729ede690d3a7d72c219.png)

Remark. I used an wel known limit





P12.



Proof. Let






![$\lim_{x\to\infty}\ \frac {1}{x^3}\cdot \left[\det (\mathrm{A+xB})-\det (\mathrm{C+xA})\right]=$](http://latex.artofproblemsolving.com/d/e/0/de06566a43429b98d7e862b034a60b9ea286947b.png)
![$\lim_{x\to\infty}\ \left[\det \left(\mathrm{\frac 1x A+B}\right)-\det \left(\mathrm{\frac 1xC+A}\right)\right]=$](http://latex.artofproblemsolving.com/a/b/9/ab9ebc28e4b92494d16cc92a61370447bf25110b.png)

In conclusion,







P13. Gasiti






Dem. Coeficientii ecuatiei date sunt rationali








inseamna



Deci



In concluzie, ecuatia devine

P14. Sa se determine






Metoda 1. Se observa ca















Metoda 2.




au cel putin o radacina comuna. In concluzie,





Metoda 3.











P15. Aratati ca in orice


Comentariu. Obisnuiam sa spun elevilor mei ca oridecateori intalnesc un produs (in particular puteri !) de tipul



inmulteasca cu doi relatia si sa aplice pachetul de formule care exprima asemenea produse printr-o suma de functii trigonometrice de acelasi tip, adica



Aplicam recomandarea exercitiului propus. Nu prea imi vine sa cred ca este de la ON - 1980. Nici pe vremea mea 1956-1960 (liceu) nu s-au dat asemenea probleme.
Metoda 1.
![$\boxed{\begin{array}{c}
\sin ^2\ \frac{A-B}{2}+\sin A\sin B+\sin ^2\ \frac{C}{2}=1\\\\
2\sin ^2\ \frac{A-B}{2}+2\sin A\sin B+2\sin ^2\ \frac{C}{2}=2\\\\
\left[\underline 1-\underline{\underline{\cos (A-B)}}\right]+\left[\underline{\underline{\cos (A-B)}}-\underline{\underline{\underline{\cos (A+B)}}}\right]+\left[\underline 1-\underline{\underline{\underline{\cos C}}}\right]=\underline 2\end{array}}$](http://latex.artofproblemsolving.com/3/6/b/36bdcc92a8a106ef4f38b7cd378fd26887310f63.png)

Metoda 2.




Va propun sa retineti si sa dovediti




P16. Sa se construiasca media armonica a doua segmente date.
Demonstratie 1. Pe o dreapta







doua puncte












Demonstratie 2. Fie







See and here
P17. Let








Proof. I"ll use the Ptolemy's theorem








P18. Se considera paralelogramele


![$[AX]$](http://latex.artofproblemsolving.com/3/d/1/3d107510e4dbf408903f44ba8d086233c93e9135.png)
![$[BY]$](http://latex.artofproblemsolving.com/0/8/b/08bb6c53bd2150c9f100eb3b12e6fe5851407b38.png)
![$[CZ]$](http://latex.artofproblemsolving.com/4/1/3/413a303b86a994c3947face250191afbcdfda8fe.png)
![$[DT]$](http://latex.artofproblemsolving.com/6/d/d/6dd49550ab42ec2f047eaf4b357ac4e7d1387b1e.png)
Demonstratie. Fie mijloacele




![$[AX]$](http://latex.artofproblemsolving.com/3/d/1/3d107510e4dbf408903f44ba8d086233c93e9135.png)
![$[BY]$](http://latex.artofproblemsolving.com/0/8/b/08bb6c53bd2150c9f100eb3b12e6fe5851407b38.png)
![$[CZ]$](http://latex.artofproblemsolving.com/4/1/3/413a303b86a994c3947face250191afbcdfda8fe.png)
![$[DT]$](http://latex.artofproblemsolving.com/6/d/d/6dd49550ab42ec2f047eaf4b357ac4e7d1387b1e.png)


de dovedit



segmentele
![$[MP]$](http://latex.artofproblemsolving.com/4/8/2/4821ed42ce01e14fb61be739cc547c042e1a9005.png)
![$[NR]$](http://latex.artofproblemsolving.com/a/3/b/a3bdc78a50507a653e0bd3319b564bfcd7c3862f.png)
![$[UV]$](http://latex.artofproblemsolving.com/a/1/3/a136f90fcd9d8d96d81566cab1c035ac43940789.png)
![$[MP]$](http://latex.artofproblemsolving.com/4/8/2/4821ed42ce01e14fb61be739cc547c042e1a9005.png)
![$[NR]$](http://latex.artofproblemsolving.com/a/3/b/a3bdc78a50507a653e0bd3319b564bfcd7c3862f.png)

P19. Denote


Proof. Inmultim fiecare linie a determinantului cu











P20. Let two fixed






Proof. Denote







We have the equality






P21. Let





Proof.



Suppose w.l.o.g. that




![$[BC]\ .$](http://latex.artofproblemsolving.com/5/f/a/5fad78e281930919485d791e012363fda8c76507.png)



is cyclic. Apply the Ptolemy's relation to



P22. Let







Proof. Observe that

















Ptolemy's theorem to





Remark.





P23. Dacă




Demonstratie. Fie ecuatia





Prin urmare,








Relatia din ipoteza






P24. Fie





Proof. Apply the Pascal's theorem to the cyclical hexagon

P25. Fie









Dem. Se arata usor ca




Asadar punctele











P26. Let





Proof. Denote the midpoint

![$[BC].$](http://latex.artofproblemsolving.com/d/9/7/d97715d7697e7f611100ba3a57a7af5e1503beb4.png)



I"ll use the identity



I"ll apply the identity







P27. Let an acute







Proof. Let the midpoints



![$[BC],$](http://latex.artofproblemsolving.com/0/f/0/0f0051fd91203595eadcb640cf7d778f1ee74438.png)
![$[CA],$](http://latex.artofproblemsolving.com/f/3/3/f33f93425ef3884c22f1ac8be58f223808cfa4b8.png)
![$[AB]$](http://latex.artofproblemsolving.com/a/d/a/ada6f54288b7a2cdd299eba0055f8c8d19916b4b.png)







I"ll use the power








Obtain analogously



P28 (Ruben Auqui). Let a square











![$[CD].$](http://latex.artofproblemsolving.com/4/6/7/4679d35607e9ff3c1a6b07dcd6521e73fcc70246.png)
Proof. Prove easily that







P29. Let




Proof 1 (trigonometric). Denote








Proof 2 ("slicing").
P30. Let




Proof.













is a positive integer. Found





This post has been edited 470 times. Last edited by Virgil Nicula, Feb 19, 2018, 8:29 PM