113. Range for a function.

by Virgil Nicula, Sep 12, 2010, 2:54 AM

PP1. Prove that $\left(\forall\right)$ $x\in \left[ 0,\frac {\pi}{2} \right]$ have $0\le x\cos x\le \frac {a^2}{\sqrt {1+a^2}}$ where the number $a$ is the unique solution of the equation $\tan x=\frac 1x\ ,\ x\in \left(0,\frac {\pi}{2}\right)\ .$

Proof. Let $f(x)=x\cos x$ , $x\in \left[ 0,\frac {\pi}{2} \right]$ . Thus, $f'(x)=(\cos x-x\sin x)\ .s.s.\ (1-x\tan x)\searrow$ , i.e. $f'$ is strict decreasing and $f'(0)=1>0>-\infty =\lim_{x\nearrow\frac {\pi}{2}}f'(x)$ . Hence exists

and is uniquelly $a\in \left(0,\frac {\pi}{2}\right)$ so that $f'(a)=0$ and $f'(x)\ .s.s.\ (a-x)$ , i.e. $f'(x)>0$ on $[0,a)$ and $f'(x)<0$ on $\left(a,\frac {\pi}{2}\right)$ . In conclusion $f\nearrow$ on $[0,a]$ and $f\searrow$ on $\left[a,\frac {\pi}{2}\right]$ , i.e.

$f(x)\le f(a)$ on $\left[ 0,\frac {\pi}{2} \right]$ . Since $f'(a)=0$ $\iff$ $a\tan a=1$ $\iff$ $\tan a=\frac 1a$ $\iff$ $\cos a=\frac {a}{\sqrt{1+a^2}}$ obtain $f(x)\le f(a)=a\cos a$ , i.e. $f(x)\le \frac {a^2}{\sqrt{1+a^2}}$ for any $x\in \left[ 0,\frac {\pi}{2} \right]$ .



PP2. Without using calculus, find the maximum and minimum values on the curve $y= \frac{x}{x^{2}+3x+4}$.

Proof. Observe that $x^2+3x+4>0$ and $(\forall )\ \underline{x\ne 0}\ ,\ \frac 1y=3+x+\frac 4x$ , where the function $f(x)=x+\frac 4x\ ,\ x\ne 0$ is odd and

$f(x)\in (-\infty ,-4]\cup [4,\infty )$ for any $x\ne 0$ because $x>0\implies x+\frac 4x\ge 2\sqrt 4=4$ . Therefore, $\frac 1y\in (-\infty ,-1]\cup [7,\infty )$ , i.e.

$y\in [-1,0)\cup\left (0,\frac 17\right]=\left[-1,\frac 17\right]^*$ . For $\underline{x=0}$ obtain $y=0$ . In conclusion, $y\in \left[-1,\frac 17\right]$ .



PP3. Find the range of the function $f(x)=\frac{x^{2}+x+1}{x^{2}+1}\ ,\ x\in \mathbb R$.

Method 1. Denote $f(x)=\frac{x^{2}+x+1}{x^{2}+1}\ ,\ x\in\mathbb R$ . Observe that $f(0)=1$ and for $x\ne 0\ ,\ f(x)=1+\frac {x}{x^2+1}=$ $1+\frac {1}{g(x)}$ ,

where $g(x)=x+\frac 1x$ . The function $g$ is odd and for $x>0\ ,\ g(x)\in [2,\infty )$ . In conclusion, for any $x\ne 0$ we have $|g(x)|\ge 2\iff$

$g(x)\in (-\infty ,-2]\cup [2,\infty )\implies$ $f(x)\in \left[\frac 12,\frac 32\right]$ . In conclusion, for any $x\in\mathbb R$ we have $f(x)\in \left[\frac 12,\frac 32\right]\cup\{0\}$ , i.e. $y\in \left[\frac 12,\frac 32\right]$ .

Method 2. Denote $f(x)=y$ , i.e. $(1-y)x^2+x+(1-y)=0$ . For $x=0$ have $y=1$ . Let $y\ne 1$ . I'"ll find $y\in\mathbb R$ for which

$(\exists )x\in\mathbb R$ so that $y=f(x)$ , i.e. the discriminant $\Delta\equiv b^2-4ac=1-4(1-y)^2\ge 0\iff$ $|y-1|\le\frac 12\iff$ $y\in\left[\frac 12,\frac 32\right]$ .



PP4.[/url] Prove that $(\forall )\ x\in\mathbb R^*\ ,\ x\left[(x^2+1)^{\frac{1}{x}}-e^{2\arctan{x}}\right]< 0\ .$

Proof. Define the relation over $\mathbb R\ : x\ \mathrm{.s.s.}\ y\ \iff\ xy>0\ \vee\ x=y=0\ \iff\ \mathrm{sign(x)=sign(y)}$ , i.e. $x$ and $y$ have same signature. Denote the function $f:\mathbb  R\rightarrow \mathbb R$ , where

$f(x)=\ln\left(x^2+1\right)-2x\arctan x$ . Observe that $f(0)=0$ and $f'(x)=\frac {2x}{x^2+1}-2\left(\arctan x+\frac {x}{x^2+1}\right)$ , i.e. $\boxed{f'(x)=-2\arctan x\ \mathrm{.s.s.}\ (-x)}$ . Thus, for $x< 0\ ,$

$f'(x)>0$ , i.e. $f\nearrow$ (increasing) and for $x> 0\ ,\ f'(x)<0$ , i.e. $f\searrow$ (decreasing). Thus, $f(0)=0$ and $f(x)<0$ for any $x\ne 0\implies$ $(\forall )\ x\in\mathbb R^*\ ,\ \left[(x^2+1)^{\frac 1x}-e^{2\arctan x}\right]\ \mathrm{.s.s.}$

$\frac {\ln\left(x^2+1\right)}x-2\arctan x=$ $\frac {f(x)}x\ \mathrm{.s.s.}\ xf(x)\ \mathrm{.s.s.}\ (-x)\implies$ $x\left[(x^2+1)^{\frac{1}{x}}-e^{2\arctan{x}}\right]< 0$ , i.e. $\left\{\begin{array}{ccccc}
x>0 & \implies & (x^2+1)^{\frac 1x} & < & e^{2\arctan x}\\\\
x<0 & \implies & (x^2+1)^{\frac{1}{x}} & > & e^{2\arctan x}\end{array}\right\|$ .
This post has been edited 19 times. Last edited by Virgil Nicula, Nov 30, 2015, 2:33 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a