379. Geometrical extremity I.

by Virgil Nicula, Jun 29, 2013, 1:47 PM

PE12. We have given a circle $w$ and two nonparallel tangents $ AE$ , $ AF$ at points $ \{E,F\}\subset w$ . For a point mobile $ M$ of the smaller

arc $EF$ the tangent to $ w$ at $ M$ meets $ AE$ at $ B$ and $ AF$ at $ C$ . How must $ M$ be chosen so that the triangle $ ABC$ has maximum area ?


Proof. I'll use the standard notations for the $\triangle ABC$ with the $ A$-exincircle $ w = C(I_a,r_a)$ . Thus, $ \left\|\begin{array}{c}
AE = AF = p\ (\mathrm{constant})\\\\
 a = (p - b) + (p - c)\\\\
MB=BE=p - c = r_a\tan\frac B2\\\\
MC=CF=p - b= r_a\tan\frac C2\end{array}\right\|\ \Longrightarrow$ $\boxed{a = r_a\left(\tan\frac B2 + \tan\frac C2\right)}\ (*)$ .

Thus, $ S = [ABC] = r_a(p - a)$ is $\max\iff$ $a$ is $\min\ \stackrel{(*)}{\iff}$ $\left(\tan\frac B2 + \tan\frac C2\right)$ is $\min\iff$ $\frac {\sin\frac {B+C}2}{\cos\frac B2\cos\frac C2}$ is $\min$ , where $ \frac {B+C}2= 90^{\circ} - \frac A2$ (constant) $\iff$

$ 2\cos\frac B2\cos\frac C2$ is $\max\iff$ $\cos\frac {B+C}2+\cos\frac {B-C}2$ is $\max\iff$ $\cos\frac {B-C}2$ is $\max\iff$ $B = C$ $ \Longleftrightarrow BC\parallel EF$ . Remark that can use (or can prove easily)

the well-known $\{\alpha , \beta \}\subset\left(0,\frac {\pi}2\right)\implies \frac {\tan\alpha +\tan \beta}2\ge\tan\frac {\alpha +\beta}2$ , i.e. the function $\tan\ :\ \left(0,\frac {\pi}2\right)\ \rightarrow\ \mathbb R$ is convex. Have the equality iff $\alpha =\beta$ .



PE13. Given are $ \{p,q\}\subset\mathcal N^*$ and a point $ F$ in the interior of a fixed angle with vertex $ O$ . A line through $ F$ cut the

sides of the angle at $ X$ and $ Y$ . Find the position of the line for which $ OX^p\cdot OY^q$ is minimum.

Lemma. Given are $ \{p,q\}\subset \mathcal N^*$ and the variables $ \{x,y\}\subset (0,\infty )$ for which $ x + y = 1$ . Then the product $ x^p\cdot y^q$ is maximum if and only if $ \frac xp = \frac yq$ .


Proof of the lemma. $ x + y = 1$ $ \Longleftrightarrow$ $ p\cdot\frac xp + q\cdot\frac yq = 1$ . Then the product $ x^p\cdot y^q$ is maximum if and only if the product $ \left(\frac xp\right)^p\cdot\left(\frac yq\right)^q$ is maximum $ \Longleftrightarrow$ $ \frac xp = \frac yq$ .

Proof of the proposed problem. Denote $ \left\|\begin{array}{c} A\in (OX\ ,\ AF\parallel OY\ ,\ OA = a \\
 \\
B\in (OY\ ,\ BF\parallel OX\ ,\ OB = b\end{array}\right\|$ . Observe that the points $ A$ and $ B$ are fixed, i.e. $ a$ and $ b$ are constant and $ \frac {a}{OX} + \frac {b}{OY} = 1$ . Apply the upper lemma for $ x = \frac {a}{OX}$ and $ y = \frac {b}{OY}\ \ (\ x + y = 1\ )$ . Thus, the product $ OX^p\cdot OY^q$ is minimum $ \Longleftrightarrow$ $ \left(\frac {a}{OX}\right)^p\cdot\left(\frac {b}{OY}\right)^q$ is maximum $ \Longleftrightarrow$ $ x^p\cdot y^q$ is maximum $ \Longleftrightarrow$ $ \frac xp = \frac yq$ $ \Longleftrightarrow$ $ \frac {OX}{aq} = \frac {OY}{bp}$ . In conclusion, construct the points $ \left\{\begin{array}{c}
A'\in (OA\ ,\ OA'=q\cdot OA\\\\
B'\in (OB\ ,\ OB'=p\cdot OB\end{array}\right\|$ . Then the points $ A'$ , $ B'$ are fixed and $ F\in XY\parallel A'B'$ .

Here is the construct of the required points $ X$ , $ Y$ for which $ OX^p\cdot OY^q$ is minimum.



PE14. Given are $CD$ and $A\not\in CD\ .$ Let $B\in CD$ for which $AB\perp CD\ .$ Project $C$ , $D$ on a mobile line $d$ , $A\in d$ in $E$ , $F$ and let $L\in CD\cap EF\ .$ Prove that

the product $p=AE\cdot AF$ is maximum if and only if $E$ , $F$ are (harmonic) conjugate w.r.t. $A$ , $L\ ,$ i.e. the ray $[BA$ is the bisector of $\widehat{EBF}\ .$ Construct the $p$-maximum position of $d\ .$


Proof. Let the foot $L$ of the $B$-bisector in $\triangle EBF$ and $\triangle EBF$ is imilarly to itself for any position of the line $d\ .$ Thus, the ratio (homogeneous) $\frac{LE\cdot LF}{LB^{2}}$

is constant. From the next problem obtain $\frac{AE\cdot AF}{AB^{2}}\le \frac{LE\cdot LF}{LB^{2}}$ and $AE\cdot AF$ is maximum iff $A: =L\ ,$ i.e. the ray $[AB$ is the $B$- bisector in the triangle $EBF\ .$

Construct. Let a fixed circles $w_{1}$ , $w_{2}$ and $E\in w_{1}$ , $F\in w_{2}\ .$ Let $C\in w_{1}$ , $D\in w_{2}$ so that $B\in CD\ ,\ CD\perp AB$ . Let $L_{0}\in\overline{CBD}$ which belongs to the $A$-bisector of $\triangle ACD$

The required $p$-maximum position of $d$ is perpendicular $d_{0}$ raised from $A$ on $AL_{0}\ .$ Indeed, if denote $P\in d_{0}$ so that $BP\perp d_{0}\ ,$ then $\widehat{PBA}\equiv\widehat{BAL_{0}}\ ,$ i.e. $BP\parallel AL_{0}\ ,$ $\implies$ $d_{0}\perp AL_{0}$



PE15. Let $ABC$ be a fixed triangle and let $M\in [BC]$ be a mobile point. Prove that the ratio $\frac{MB\cdot MC}{MA^{2}}$ is maximum if and only if the point $M$ is the foot of the $A$- bisector.

Proof. Apply the Stewart's theorem : $MA^{2}+MB\cdot MC=\frac{1}{a}\cdot\left(c^{2}\cdot MC+b^{2}\cdot MB\right)\ .$ Therefore, the ratio $\frac{MB\cdot MC}{MA^{2}}$ $\mathrm{\--\ max.\ }\Longleftrightarrow$ $\frac{MA^{2}}{MB\cdot MC}$ $\mathrm{\--\ min.\ }\Longleftrightarrow$

$\frac{c^{2}}{MB}+\frac{b^{2}}{MC}$ $\mathrm{\--\ min.\ }$ It is achieved (see the next problem) when $\frac{MB}{c}=\frac{MC}{b}=\frac{a}{b+c}\ ,$ i.e. the point $M$ is the foot of the $A$- bisector.



PE16. (commonplace). Given are the positive constants $a$ , $b$ , $c\ .$ If $x>0\ ,\ y>0\ ,\ x+y=a\ ,$ then the sum $\frac{c^{2}}{x}+\frac{b^{2}}{y}$ is minimum if and only if $\frac{x}{c}=\frac{y}{c}=\frac{a}{b+c}\ .$

$(c+b)^{2}=\left(\frac{c}{\sqrt x}\cdot\sqrt x+\frac{b}{\sqrt y}\cdot\sqrt y\right)^{2}\ \stackrel{C.B.S.}{\le}\  \left(\frac{c^{2}}{x}+\frac{b^{2}}{y}\right)$ $\cdot (x+y)=a\left(\frac{c^{2}}{x}+\frac{b^{2}}{y}\right)$ obtain $\frac{c^{2}}{x}+\frac{b^{2}}{y}\ge \frac{(b+c)^{2}}{a}\ .$ Have the equality $\iff \frac{\sqrt x}{\frac{c}{\sqrt x}}=\frac{\sqrt y}{\frac{b}{\sqrt y}}\ ,$ i.e. $\frac{x}{c}=\frac{y}{b}=\frac{a}{b+c}\ .$


PE17. Let $ P$ be a fixed point which is interior to a given circle $ w = C(O,R)$ and for which $ OP = \delta$. Let $ ABCD$ be a variable quadrilateral which

is inscrbed in the circle $ w$ and $ P\in AC\cap BD$ , $ AC\perp BD\ .$ Find the range of the value of the perimeter of $ ABCD$ in terms of $ R$ and $ \delta\ .$


Proof. Denote the perimeter $ \pi = a + b + c + d\ .$ I"ll use the well-known property (or prove easily) in a convex quadrilateral $ ABCD$ what is inscribed in the circle $ C(O,R)\ .$

Thus, if $\left\|\begin{array}{c} P\in AC\cap BD\ ,\ OP = d \\
 \\
AB = a\ ,\ BC = b \\
 \\
CD = c\ ,\ DA = d\end{array}\right\|\ ,$ then $ \frac {PA}{ad} = \frac {PB}{ab} = $ $\frac {PC}{bc} = \frac {PD}{cd} =$ $ \sqrt {\frac {R^2 - \delta^2}{abcd}}\ .$ Particularly, $ AC\perp BD$ $ \implies$ $ {\frac {1}{2R} = \frac {PA}{ad} = \frac {PB}{ab} = \frac {PC}{bc} = \frac {PD}{cd} = \sqrt {\frac {R^2 - \delta^2}{abcd}}}\ .$

Denote $ \boxed {\begin{array}{c}
ac = x\\\\
bd = y\end{array}}\ .$ Thus, $ \boxed {xy = 4R^2(R^2 - \delta^2)}$ (constant). Therefore, $ a^2 + c^2 = b^2 + d^2 = 4R^2\implies$ $ \left\{\begin{array}{c} 2x = 2ac\le a^2 + c^2 = 4R^2 \\
 \\
2y = 2bd\le b^2 + d^2 = 4R^2\end{array}\right\|$ $ \implies$ $ \boxed {\{x,y\}\subset\left(\ 0\ ,\ 2R^2\ \right]}$ and

$ \left\|\begin{array}{ccc} a + c = \sqrt {a^2 + c^2 + 2ac} = \sqrt {4R^2 + 2x} \\
 \\
\ b + d = \sqrt {b^2 + d^2 + 2bd} = \sqrt {4R^2 + 2y}\end{array}\right\|$ $ \implies$ $ \boxed {\pi = \sqrt {4R^2 + 2x} + \sqrt {4R^2 + 2y}} = \sqrt 2\cdot F(x,y)\ .$ The problem is to find the range of $ F(x,y) = \sqrt {2R^2 + x} + \sqrt {2R^2 + y}$,

where $ \left\|\begin{array}{c} \{x,y\}\subset \left(\ 0\ ,\ 2R^2\ \right] \\
 \\
xy = 4R^2(R^2 - \delta^2)\end{array}\right\|$ . The minimum is touched iff $ ABCD$ is harmonically, i.e. $ \left\{\begin{array}{c} ac = bd = 2R\sqrt {R^2 - \delta^2} \\
 \\
a^2 + c^2 = b^2 + d^2 = 4R^2\end{array}\right\|$ $ \Longleftrightarrow$ $ \left\{\begin{array}{c} a = b = \sqrt {2R(R + \delta )} \\
 \\
c = d = \sqrt {2R(R - \delta )}\end{array}\right\|$ or inversely, i.e.

$ ABCD$ is a deltoid. The maximum is touched iff $ \left\{\begin{array}{c} x = ac = 2R^2 \\
 \\
y = bd = 2\left(R^2 - \delta^2\right)\end{array}\right\|$ $ \Longleftrightarrow$ $ \left\{\begin{array}{c} a = c = R\sqrt 2 \\
 \\
b = \sqrt {2R^2 - \delta ^2} - \delta \\
 \\
d = \sqrt {2R^2 - \delta ^2} + \delta\end{array}\right\|$, i.e. $ ABCD$ is a trapezoid.

In conclusion, $ \boxed {2\sqrt 2\left[\sqrt {R(R + \delta )} + \sqrt {R(R - \delta )}\right]\le \pi\le 2\left[R\sqrt 2 + \sqrt {2R^2 - \delta^2}\right]}\ .$



PE18. Let $\triangle ABC$ with $AB\perp AC$ and circumcircle $ w = C(O,R)$ . Let $ P\in w$ so that $ BC$ separates $ A$ , $ P$ . Find the position of $ P$ for which $ PA + PB + PC$ is maximum.

Proof. Let $ PA = x$ , $ PB = y$ , $ PC = z\ \stackrel{(\mathrm{Ptolemy})}{\implies}\ by + cz = ax$ and $ y^2 + z^2 = a^2$ . Thus, $ PA + PB + PC = y + z + \frac {by + cz}{a} = \frac 1a\cdot [(a + b)y + (a + c)z]$ .

$ [(a + b)y + (a + c)z]^2\ \stackrel{C.B.S.}{\le}\  \left[(a + b)^2 + (a + c)^2\right]\cdot \left(y^2 + z^2\right)$ , i.e. $ \boxed {\ PA + PB + PC\le \sqrt {(a + b)^2 + (a + c)^2}\ }$ with the equality iff $ \boxed {\ \frac {y}{a + b} = \frac {z}{a + c} = \frac {x}{a + b + c}\ }$ .

Remark. Observe that $ \widehat {BAP}\equiv\widehat {BCP}$ and $ \tan\widehat {BAP} = \tan\widehat {BCP} = \frac yz$ , i.e. $ \boxed {\ \tan\widehat {BAP} = \frac {a + b}{a + c}=\frac {c(p-c)}{b(p-b)}\ }$ . We can construct easily now the maximum position of the point $ P$ .



PE19. Let $ABCD$ be a quadrilateral and $O\in AC\cap BD$. Find and construct the positions of $M\in (AB)$ and $N\in (CD)$, $O\in MN$ so that the sum $\frac{MB}{MA}+\frac{NC}{ND}$ is minimum.

Proof. Let the minimum position $M_{0}$ of the mobil point $M$ and $N_{0}\in CD\cap OM_{0}$ . $\left\{\begin{array}{c}m(\widehat{MOA})=x\\\ m(\widehat{MOB}=y\end{array}\right\|$ $\Longrightarrow$ $\left\{\begin{array}{c}\frac{MB}{MA}=\frac{OB}{OA}\cdot\frac{\sin y}{\sin x}\\\\ \frac{NC}{ND}=\frac{OC}{OD}\cdot \frac{\sin x}{\sin y}\end{array}\right\|$ $\Longrightarrow$ $\frac{MB}{MA}\cdot\frac{NC}{ND}=\frac{OB\cdot OC}{OA\cdot OD}$ . (constant).

Then the given sum is minimum when $\frac{M_{0}B}{M_{0}A}=\frac{N_{0}C}{N_{0}D}=\sqrt{\frac{OB\cdot OC}{OA\cdot OD}}$. Let $\left\{\begin{array}{c}\boxed{\ T\in AB\ ,\ TO\parallel CD\ }\\\\ S\in TO\cap AD\end{array}\right\|\Longrightarrow$ $\frac{SA}{SD}=\frac{OA}{OC}$. Apply the Menelaus' theorem to $\overline{SOT}/\triangle ABD\ :$

$\frac{TB}{TA}$ $\cdot \frac{SA}{SD}\cdot\frac{OD}{OB}=1$ $\Longrightarrow$ $\frac{TB}{TA}=\frac{OB\cdot OC}{OA\cdot OD}$ , i.e. $\frac{TB}{TA}=\left(\frac{M_{0}B}{M_{0}A}\right)^{2}$ . Let the reflection $M'_{0}$ of $M_{0}$ w.r.t. $T$ . Then $M_{0}$, $M'_{0}$ are harmonical conjugate w.r.t. $A$ , $B$ .

Construct with the line and compasses the position of the minimum $M_{0}$ for which $\boxed{\ \frac{M_{0}B}{M_{0}A}=\sqrt{\frac{TB}{TA}}\ }$. It is easily !



PE20. Let $\triangle ABC$ and a mobile point $M\in (BC)$ for which denote $\left\{\begin{array}{ccc}
X\in AB\ ; & MX\parallel AC\\\\
Y\in AC\ ; & MY\parallel AB\end{array}\right\|$ . Find the position of the point $M$ so that the length of the segment $[XY]$ is minimum.

Proof 1. Let $\left\{\begin{array}{ccc}
AX=MY=x\in (0,c)\\\\
AY=MX=y\in (0,b)\end{array}\right\|$ . Thus, $\left\{\begin{array}{ccc}
\frac {MY}{BA}=\frac {CM}{CB} & \implies & \frac xc=\frac {MC}{BC}\\\\
\frac {MX}{CA}=\frac {BM}{BC} & \implies & \frac yb=\frac {MB}{BC}\end{array}\right\|\bigoplus\implies$ $\boxed{\frac xc+\frac yb=1}\ (*)$ i.e. $bx+cy=bc$ . Let $\frac {bx}{cy}=t>0$ , i.e.

$\frac {bx}t=\frac {cy}1=\frac {bc}{t+1}\iff$ $\left\{\begin{array}{c}
x=\frac {ct}{t+1}\\\\
y=\frac b{t+1}\end{array}\right\|$ . The generalized Pythagoras' theorem to $\triangle XAY\ :\ XY^2=AX^2+AY^2-2\cdot AX\cdot AY\cdot\cos A=$

$\left(\frac {ct}{t+1}\right)^2+\left(\frac {b}{t+1}\right)^2-2\cdot \left(\frac {ct}{t+1}\right)\cdot \left(\frac b{t+1}\right)\cdot\cos A$ . So $XY^2=f(t)\equiv\frac {c^2t^2-2bct\cos A+b^2}{(t+1)^2}$ . I"ll look for the range of $f(t)\ ,\ t>0$ , i.e. the set of $\lambda\in\mathbb R_{+}$

so that the equation $f(t)=\lambda$ has at least one positive real root $\iff$ $\left(c^2-\lambda\right)t^2-2\left(bc\cdot\cos A+\lambda\right)t+\left(b^2-\lambda\right)=0$ has at least one positive real root $\iff $

$\Delta^{\prime}(\lambda )=\left(bc\cdot\cos A+\lambda\right)^2-\left(c^2-\lambda\right)\left(b^2-\lambda\right)\ge 0\iff$ $\lambda \left(b^2+c^2+2bc\cdot\cos A\right)\ge b^2c^2\left(1-\cos^2A\right)\iff$ $\lambda\ge \frac {b^2c^2\sin^2A}{2\left(b^2+c^2\right)-a^2}=\frac {4S^2}{4m_a^2}\iff$ $\boxed{\lambda\ge \left(\frac {S}{m_a}\right)^2}$ .

In conclusion the range of the function $f(t)\ ,\ t>0$ is $f\left(\mathbb R_{+}\right)=\left[\frac {S^2}{m_a^2},\infty\right)$ . Prove easily that $\boxed{t_{\min}=\frac bc\cdot\frac {b+c\cdot\cos A}{c+b\cdot\cos A}=\frac {3b^2+c^2-a^2}{b^2+3c^2-a^2}}$ and

$\boxed{XY\ge (XY)_{\min}=\frac S{m_a}}$ which is the distance from $B$ or $C$ to the $A$-median of $\triangle ABC$ .

Proof 2. Let the midpoint $D$ of $[BC]$ and $\left\{\begin{array}{c}
Z\in MY\cap AD\\\\
T\in MX\cap AD\end{array}\right\|$ . So $\frac {MX}{AC}+\frac {MY}{AB}=\frac {BM}{BC}+\frac {CM}{BC}=1$ , i.e. $\boxed{\frac {MX}{AC}+\frac {MY}{AB}=1}\ (*)\implies$ $\left\{\begin{array}{c}
\frac {DZ}{DA}=\frac {DM}{DB}\\\\
\frac {DT}{DA}=\frac {DM}{DC}\end{array}\right\|\stackrel{(DB=DC)}{\implies}$

$\boxed{\ DZ=DT\ }\ (1)$ . Appear two cases: $\odot\begin{array}{cccccc}
\nearrow & M\in (BD)\ : & \frac {ZY}{AB}=\frac {MY-MZ}{AB}=\frac {MY}{AB}-\frac {MZ}{AB}=\frac {MC}{BC}-\frac {MD}{BD} & \implies & \frac {ZY}{AB}=\frac {MC-2\cdot MD}{BC}=\frac {DC-MD}{BC}=\frac {BM}{BC} & \searrow\\\\ 
\searrow & M\in (DC)\ : & \frac {ZY}{AB}=\frac {MY+MZ}{AB}=\frac {MY}{AB}+\frac {MZ}{AB}=\frac {CM}{BC}+\frac {DM}{DB} & \implies & \frac {ZY}{AB}=\frac {CM+2\cdot DM}{BC}=\frac {DC+DM}{BC}=\frac {BM}{BC} & \nearrow\end{array}$

$\implies$ $\frac {ZY}{AB}=\frac {BM}{BC}=\frac {BX}{AB} \implies ZY=BX\stackrel{(ZY\parallel BX)}{\implies}$ $BXYZ$ is a parallelogram $\implies\boxed{\ XY=BZ\ }\ (2)$ . Hence $XY$ is minimum iff $BZ$ is minimum, i.e. $BZ\perp AD$

and in this case $XY\perp AD$ . Since the area $\sigma [ABC]=\frac S2=\frac 12\cdot m_a\cdot\delta_{AD}(B)$ obtain that the minimum value of $XY$ is $\frac S{m_a}$ , where $m_a=AD$ and $S=\sigma[ABC]$ .

Remarks.

$1\blacktriangleright$ If $M$ is the foot of the $A$-symmedian, then $\frac {SB}{SC}=\left(\frac cb\right)^2$ , i.e. $\frac {SB}{c^2}=\frac {SC}{b^2}=\frac a{b^2+c^2}$ and $\left\{\begin{array}{c}
AX=MY=\frac {cb^2}{b^2+c^2}\\\\
AY=MX=\frac {bc^2}{b^2+c^2}\end{array}\right\|$ . Using the relations $\cos A=\frac {b^2+c^2-a^2}{2bc}$

and $XY^2=AX^2+AY^2-2\cdot AX\cdot AY\cdot\cos A$ obtain that $\boxed{XY=\frac {abc}{b^2+c^2}}$ . From the upper extremum problem get $\frac S{m_a}\le\frac {abc}{b^2+c^2}$ , i.e. $\boxed{b^2+c^2\le 4Rm_a}$ .

$2\blacktriangleright$ If $M\in (DC)$ then prove easily that $T\in BY\iff MB^2=MB\cdot BC$ . Indeed, if denote $MD=x$ then $MB=\frac a2+x\ ,\ MC=\frac a2-x$ and $MB^2=MC\cdot BC\iff$

$\left(\frac a2+x\right)^2=a\left(\frac a2-x\right) \iff$ $a^2=4x(x+2a)$ . But $T\in BY\iff$ $\frac {BD}{BC}\cdot\frac {YC}{YA}\cdot\frac {TA}{TD}=1\iff$ $\frac 12\cdot\frac {MC}{MB}\cdot\frac {MC}{MD}=1\iff$ $MC^2=2\cdot MB\cdot MD\iff$

$\left(\frac a2-x\right)^2=$ $2x\left(\frac a2+x\right)\iff$ $a^2=4x(x+2a)$ . In the first case when $M\in (BD)$ prove analogously.

$3\blacktriangleright$ If $M$ is the foot of the $A$-bisector, then $\frac {MC}b=\frac {MB}c=\frac a{b+c}$ and $AX=AY=\frac {bc}{b+c}\implies$ $XY^2=2\cdot AX^2\cdot (1-\cos A)=$ $\frac {2b^2c^2}{(b+c)^2}\left(1-\frac {b^2+c^2-a^2}{2bc}\right)\implies$

$XY^2=\frac {4bc(s-b)(s-c)}{(b+c)^2}\implies$ $XY=\frac 2{b+c}\cdot\sqrt{bc(s-b)(s-c)}$ , i.e. $XY=l_a\tan\frac A2\ge \frac S{m_a}\implies$ $ \boxed{m_al_a\ge S\cot\frac A2}$ , where $l_a$ is the length of the $A$-bisector.



PE21. Find the maximum value of the product $ab$ , where $\{a,b\}\subset\mathbb R^*_+$ and $a^2+3ab+5b^2=80$ .

Proof 1. $80=3ab+a^2+5b^2\ge$ $ 3ab+2ab\sqrt 5\implies$ $ab\le\frac {80}{2\sqrt 5+3}\implies$ $\boxed{ab\le \frac {80\left(2\sqrt 5-3\right)}{11}}$ . We have equality if and only if $a=b\sqrt 5$ .

Proof 2. Denote $\lambda=ab$ and $\frac ab=t$ . Thus, $\frac {a^2+3ab+5b^2}{ab}=\frac {80}{\lambda}\iff$ $\frac {t^2+3t+5}{t}=\frac {80}{\lambda}\iff$ $\lambda\left(t^2+3t+5\right)=80t\iff$ $\lambda t^2+(3\lambda -80)t+5\lambda=0$ .

In conclusion, $t\in\mathbb R\iff \Delta (\lambda )\ge 0\iff$ $(3\lambda -80)^2-20\lambda^2\ge 0\iff$ $20\lambda^2-(3\lambda -80)^2\le 0\iff$ $\left(2\lambda\sqrt 5+3\lambda -80\right)\left(2\lambda\sqrt 5-3\lambda +80\right)\le 0\iff$

$\left(\lambda -\frac {80}{3+2\sqrt 5}\right)\left(\lambda +\frac {80}{2\sqrt 5-3}\right)\ \stackrel{(\lambda >0)}{\le}\ 0\iff$ $\lambda \le \frac {80}{3+2\sqrt 5}\iff$ $\boxed{\lambda\le\frac {80\left(2\sqrt 5-3\right)}{11}}$ with equality iff $\{a,b\}\subset (0,\infty )\ ,\ ab=\frac {80\left(2\sqrt 5-3\right)}{11}$ and $a^2+3ab+5b^2=80$.



PE22. Find the maximum area of the triangle $ABC$ with $\left\{\begin{array}{ccc}
a & = & 9\\\\
b & = & 41k\\\\
c & = & 40k\end{array}\right\|$ , where $k$ is a real positive variable.

Proof 1. Let the Apollonius' circle $w$ with the diameter $[MN]$ , where $M\in (BC)$ , $N\in BC$ so that $B\in (NC)$ and $\frac {MB}{MC}=\frac {NB}{NC}=\frac {40}{41}$. Since $\frac {AB}{AC}=\frac {40}{41}$ then $A\in w$ .

Thus, $\left\{\begin{array}{ccc}
\frac {MB}{40}=\frac {MC}{41}=\frac a{81} & \implies & MB=40\cdot \frac 19\\\\
\frac {NB}{40}=\frac {NC}{41}=\frac a1 & \implies & NB=40\cdot 9\end{array}\right\|\implies$ $MN=BM+BN=40\left(9+\frac 19\right)\implies $ $MN=\frac {40\cdot 82}9$ . Thus, the area $[ABC]$ is $\max\iff$

$h_a$ is $\max\iff$ $h_a=\frac 12\cdot MN\iff$ $h_a=\frac {20\cdot 82}9\iff$ the maximum area of $\triangle ABC$ is $S=\frac {ah_a}2=\frac 12\cdot 9\cdot \frac {20\cdot 82}9$ , i.e. $\boxed{S_{\mathrm{max}}=820}$ .

Proof 2. Prove easily that $\left\{\begin{array}{ccccccc}
2s & = & 9(9k+1) & ; & 2(s-a) & = & 9(9k-1)\\\\
2(s-b) & = & 9-k & ; & 2(s-c) & = & 9+k\end{array}\right\|$ , where $2s=a+b+c$ . Thus, $\boxed{\ \frac 19<k<9\ }$ and $S$ is $\max\iff$

$(9-k)(9+k)(9k+1)(9k-1)$ is $\max\iff$ $\left(81-k^2\right)\left(81k^2-1\right)$ is $\max\iff$ $\left(81-k^2\right)\left(k^2-\frac 1{81}\right)$ is $\max$ . Since $\left(81-k^2\right)+\left(k^2-\frac 1{81}\right)=81-\frac 1{81}$ (constant),

then $S$ is $\max\iff$ $81-k^2=k^2-\frac 1{81}=\frac 12\cdot \left(81-\frac 1{81}\right)$ , $\boxed{k^2=\frac 12\cdot\left(81+\frac 1{81}\right)}$ and $\frac {4S}9=\sqrt {\left(81k^2-1\right)\left(81-k^2\right)}=$ $9\left(81-k^2\right)\implies$ $S=\frac {81}4\cdot\left(81-k^2\right)=$

$\frac {81^2-1}8=\frac {80\cdot 82}8\implies$ $S_{\max}=820$ and $k_{\mathrm{max}}=\frac {\sqrt {3281}}9\approx 6,3644\in\left(\frac 19,9\right)$ .



PE23. Let $a\ ,\ b\ ,\ c$ be side lengths of a right triangle with $A=90^{\circ}$ . Find the minimum value for $E=\frac{a^3+b^3+c^3}{abc}$ and for $F=\frac {a^2(b+c)+b^2(c+a)+c^2(a+b)}{abc}$ .

Proof 1. Let $B=x\in \left(0,\frac {\pi}2\right)$ . Then $\frac a1=\frac {b}{\sin x}=\frac c{\cos x}$ , i.e. $E$ becomes $f(x)=\frac {\sin^3x+\cos^3 x+1}{\sin x\cos x}$ . Let $S=\sin x+\cos x=t\in\left(1,\sqrt 2\right]$ for any $x\in \left(0.\frac {\pi}2\right)$ .

Then $P=\sin x\cos x=\frac {t^2-1}2$ and $f$ becomes $g(t)=\frac {1+S^3-3SP}{P}=$ $\frac {1+t^3-3t\cdot \frac {t^2-1}2}{\frac {t^2-1}2}=$ $\frac {-t^3+3t+2}{t^2-1}=$ $-\frac {(t+1)^2(t-2)}{t^2-1}\implies$ $g(t)=\frac {t^2-t-2}{1-t}$ , where

$t\in\left(1,\sqrt 2\right]$ . Let $t-1=u\in \left(0,\sqrt 2-1\right]$ and $g$ becomes $h(u)=-1-u+\frac 2u$ which is evidently strict decreasing $(\searrow)$ . The minimum of $h$ is touched in $u=\sqrt 2-1\iff$

the minimum of $g$ is touched in $t=\sqrt 2\iff$ the minimum of $f$ is touched in $x=\frac {\pi}4$ and in this case $f(x)\ge f\left(\frac {\pi}4\right)=2+\sqrt 2$ , i.e. $\frac{a^3+b^3+c^3}{abc}\ge 2+\sqrt 2$ with the equality iff $b=c$

Proof 2. $E=\frac{a^3+b^3+c^3}{abc}=\frac{\left(b^3+c^3\right)+a\left(b^2+c^2\right)}{abc}\geq \frac{\frac{1}{2}\cdot (b+c)\left(b^2+c^2\right)+a\cdot 2bc}{abc}=$ $\frac{\frac{1}{2}\cdot (b+c)\sqrt{b^2+c^2}+2bc}{bc}\ge$ $\frac{\frac{1}{2}\cdot 2\sqrt {bc}\cdot \sqrt{2bc}+2bc}{bc}= 2+\sqrt 2\ .$

Remark. $f(x)=\frac {\sin^3x+\cos^3 x+1}{\sin x\cos x}=$ $\frac {\sin^2x}{\cos x}+\frac {\cos^2x}{\sin x}+\frac {\sin^2x+\cos^2x}{\sin x\cos x}=$ $\sec x-\cos x+\csc x-\sin x+\tan x+\cot x\ge 2+\sqrt 2$ .


PP24. Find the side length of a square, which has one side along an edge of the sector, that can be inscribed in a sector with central angle $ \theta$

and radius $ r$, where $ 0 < \theta\leq 90$. Determine whether a square is the largest possible rectangle (area) that can be inscribed in such a manner.


Proof.. Call the center of the sector $ O$ and let the endpoints of its arc be $ A$ and $ B$ , such that the side of the rectangle rests on $ OA$ . Let the rectangle be $ KLMN$ with

$ K,N$ on $ OA$ , $ L$ on $ OB$ and $ M$ on $ \widehat{AB}$ . Suppose w.l.o.g. that $ r = 1$ . Denote $ m(\widehat {AOM}) = x$ . Then $ KL = MN = \sin x$ , $ KN = LM = \cos x - \sin x\cot \theta$

and the area of the rectangle is $ \sigma (x) = \sin x(\cos x - \cot\theta\cdot\sin x)$ . Prove easily that $ \sigma'(x) = \cos 2x - \cot\theta\cdot\sin 2x$ . Observe that $ \left[\sigma '(x) - \sigma '\left(\frac {\theta}{2}\right)\right]$ and

$\left(\frac {\theta}{2} - x\right)$ have same sign for any $ x\in\left(0,\frac {\pi}{2}\right)$ . Therefore, $ \sigma(x)\le\sigma\left(\frac {\theta}{2}\right)$ for any $ x\in\left(0,\frac {\pi}{2}\right)$ and maximum value is $ \boxed {\ \sigma\left(\frac {\theta}{2}\right) = \frac 12\tan\frac {\theta}{2}\ }$ .

Remark. The rectangle $ KLMN$ is a square iff $ KN = MN$ $ \Longleftrightarrow$ $ \cos x - \cot\theta\cdot\sin x = \sin x$ $ \Longleftrightarrow$ $ \tan x = \frac {\tan \theta}{1 + \tan\theta}$

and in this case $ KL = \sin x = \frac {\tan x}{\sqrt {1 + \tan^2x}}$ , i.e. $ KL = \frac {\tan\theta}{\sqrt {1 + 2\tan\theta + 2\tan^2\theta}}$ .
This post has been edited 173 times. Last edited by Virgil Nicula, Feb 18, 2017, 3:39 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a