447. Locuri geometrice remarcabile.

by Virgil Nicula, Jul 7, 2016, 2:38 AM

Din setul de fonturi Lucida Sans Unicode: ≡ ≈ ∼ ≠ ∡ π ≤ ≥ ⇒ → – ∞ ∈ ∉ ⊂ ∪ ∩ ℕ ℤ ℚ ℝ Ф ∆ ∀ ∃ ∄ ⊥ ‖ ∙ Ø ±


$\boxed{L1}\blacktriangleright$ Se dau doua drepte concurente neperpendiculare $d_{1}$ , $d_{2}$ si constantele reale pozitive $k_{1}$ , $k_{2}$ , $k\ .$ Sa se determine locul geometric al punctelor $L$ din planul $\pi=(d_{1},d_{2})$ pentru care $k_{1}\cdot \delta_{d_{1}}(L)+k_{2}\cdot \delta_{d_{2}}(L)=k\ .$ Sa se stabileasca relatia intre $k_{1}$ , $k_{2}$ , $k$ si masura unghiului ascutit dintre cele doua drepte ca locul geometric sa fie nevid (relatia de compatibilitate).
Aplicatie. Sa se arate ca intr-un patrulater circumscriptibil mijloacele diagonalelor si centrul cercului inscris sunt coliniare (dreapta lui Newton).Raspuns.

$\boxed{L2}\blacktriangleright$ Se dau doua puncte fixe $A$ , $B$ si constantele reale nenule $k_{1}$ , $k_{2}$ , $k$. Sa se determine locul geometric al punctelor $L$ pentru care $k_{1}\cdot LA^{2}+k_{2}\cdot LB^{2}=k$. Sa se stabileasca relatia de compatibilitate. Discutie.
Aplicatie. Se considera patrulaterul convex $ABCD$. Sa se determine locul geometric al punctelor $L$ pentru care $LA^{2}+2\cdot LB^{2}+3\cdot LC^{2}=6\cdot LD^{2}+k\cdot [ABCD]$. Raspuns.

$\boxed{L3}\blacktriangleright$ Se da un triunghi $ABC$, o dreapta (un cerc) $d\ (w)$, un punct fix $F$ si un punct mobil $M\in d\ (w)$. Sa se determine locul geometric al punctului $L$ pentru care $\triangle FML\sim\triangle ABC$.
Aplicatie. Fiind date doua drepte $d_{1}$ , $d_{2}$ si un cerc $w$, sa se construiasca cel putin un triunghi $XYZ$ asemenea cu un triunghi dat (in particular $XYZ$- triunghi echilateral) avand $X\in d_{1}$ , $Y\in d_{2}$ si $Z\in w$.Raspuns.
Notatii. $\delta_{d}(X)$ - distanta punctului $X$ la dreapta $d$; $[XYZT]$- aria patrulaterului convex $XYZT$.


$\boxed{L4}\blacktriangleright$ Fie un triunghi $ABC$ si doua puncte mobile $X\in AB,$ $Y\in AC$ astfel incat $BX=CY.$ Notam mijlocul $L$ al segmentului $[XY].$ Sa se arate ca:
$4.1\blacktriangleright$ Daca $BC$ separa punctele $X$ si $Y,$ atunci locul geometric al lui $L$ este o dreapta paralela cu $A$-bisectoarea exterioara a $\triangle ABC.$
$4.2\blacktriangleright$ Daca $BC$ nu separa punctele $X$ si $Y,$ atunci locul geometric al lui $L$ este o dreapta paralela cu $A$-bisectoarea interioara a $\triangle ABC.$

Generalizare (Mihai Miculita). Fie $\triangle ABC,$ un punct fix $M\in (BC),$ doua puncte mobile $X\in (AB),$ $E\in (AC)$ si $L\in (XY)$ astfel incat $\frac {LX}{LY}=\frac {BX}{CY}=\frac {MB}{MC}.$ Sa se arate ca:
$G4.1\blacktriangleright$ Daca $BC$ separa punctele $X$ si $Y,$ atunci locul geometric al lui $L$ este o dreapta paralela cu $A$-bisectoarea exterioara a $\triangle ABC.$
$G4.2\blacktriangleright$ Daca $BC$ nu separa punctele $X$ si $Y,$ atunci locul geometric al lui $L$ este o dreapta paralela cu $A$-bisectoarea interioara a $\triangle ABC.$



Method 1. $\boxed{\\\begin{array}{ccc}\\\
& \blacktriangleleft\ \underline{\underline{ab+bc+ca\ =\ s^2+r^2+4Rr}}\ \blacktriangleright & \\\\
\nearrow & a(b+c)\ =\ s^2-(s-a)^2 & \searrow\\\\
\bigoplus\ \rightarrow & IA^2\ =\ r^2+(s-a)^2 & \rightarrow\ \bigoplus\\\\
\searrow & bc\ =\ AI\cdot AI_a\ =\ 4Rr+IA^2 & \nearrow\\\\\end{array}}$ $\implies\blacktriangleleft$ ab+bc+ca=s^2+r^2+4Rr $\blacktriangleright$

Method 2. $\boxed{\ bc=s(s-a)+(s-b)(s-c)\implies\sum bc=s\cdot \sum (s-a)+\sum (s-b)(s-c)=s^2+\sum \frac {S^2}{r_br_c}=s^2+r\cdot \sum r_a=s^2+r(4R+r)\ }$

PP1. In a trapezium with bases $a\ ,$ $b$ and lateral sides $c\ ,$ $d$, prove that the diagonals $p\ ,$ $q$ are given by the relations $:\ \left\{\begin{array}{ccc}
p & = & \sqrt{\frac {ab^2-a^2b-ac^2+bd^2}{b-a}}\\\\
q & = & \sqrt{\frac {ab^2-a^2b-ad^2+bc^2}{b-a}}\end{array}\right\|\ .$

Proof 1 (George_54). Suppose $AB\parallel CD$ and let $\left\{\begin{array}{ccccc}
AB=a & ; & CD=b & ; & AC=p\\\\
AD=c & ; & BC=d & ; & BD=q\end{array}\right\|\ .$ Apply Euler's theorem $:\ \boxed{p^2+q^2=c^2+d^2+2ab}\ (1)$ and law of Cosines $:$

$\left\{ \begin{array}{ccc}
p^2 & = & b^2 + c^2 - 2bc\cos D\\\\
q^2 & = & a^2+c^2- 2ac\cos A\end{array} \right\|$ $\iff\left\{ \begin{array}{ccc}
ap^2 = ab^2 + ac^2 + 2abc\cos A\\\\
bq^2 = a^2b + bc^2 - 2abc\cos A\end{array} \right\|\bigoplus$ $\implies$ $\boxed{ap^2 + bq^2 = ab^2+ ac^2+ a^2b + bc^2}\ (2)\ .$ From $(1)$ and $(2)$ we get the desired result.

Proof 2 (own). Denote $\{E,F\}\subset AB$ so that $A\in (BF)\ ,$ $B\in (AE)$ and $BE=b=AF\ .$ Apply the Stewart's theorem to the rays in the mentioned triangles $:$

$\left\{\begin{array}{ccccc}
CB/\triangle ACE\ : & CA^2\cdot BE+CE^2\cdot BA=CB^2\cdot AE+BA\cdot BE\cdot AE & \iff & bp^2+aq^2=(a+b)\left(d^2+ab\right) & (1)\\\\
DA/\triangle BDF\ : & DF^2\cdot AB+DB^2\cdot AF=DA^2\cdot BF+AB\cdot AF\cdot BF & \iff & ap^2+bq^2=(a+b)\left(c^2+ab\right) & (2)\end{array}\right\|\ \bigoplus$ $\implies$ $\boxed{p^2+q^2=c^2+d^2+2ab}\ (*)$

Now I"ll solve the system of the relations $(1)\ \wedge\ (2)\ :\ \Delta =\left|\begin{array}{cc}
b & a\\\\
a & b\end{array}\right|=b^2-a^2\ ;$ $\Delta_p=\left|\begin{array}{cc}
(a+b)\left(d^2+ab\right) & a\\\\
(a+b)\left(c^2+ab\right) & b\end{array}\right|=$ $(a+b)\left[b\left(d^2+ab\right)-a\left(c^2+ab\right)\right]\ ;$

$\Delta_q=\left|\begin{array}{cc}
b & (a+b)\left(d^2+ab\right)\\\\
a & (a+b)\left(c^2+ab\right)\end{array}\right|=$ $(a+b)\left[b\left(c^2+ab\right)-a\left(d^2+ab\right)\right]\ .$ In conclusion, $\left\{\begin{array}{ccccccc}
p^2 & = & \frac {\Delta_p}{\Delta} & \implies & p & = & \sqrt{\frac {b\left(d^2+ab\right)-a\left(c^2+ab\right)}{b-a}}\\\\
q^2 & = & \frac {\Delta_q}{\Delta} & \implies  & q & = & \sqrt{\frac {b\left(c^2+ab\right)-a\left(d^2+ab\right)}{b-a}}\end{array}\right\|\ .$



PP2 (nikolinv). Surprizing! Midline, symmedian line, orthic line (side of the orthic triangle) and antiparallel through vertex are concurent.

Proof 1 (nikolinv). Let $E$ and $D$ be points on $A'C'$ and $A'B'$ ($A'B'C'$ is orthic triangle of $ABC$) so that $AEA'D$ be a parallelogram. Then $K\in BD\cap CE\ .$ Also, it is a simple proof that $K$ is between midpoint of a side and midpoint of an altitude (See: Ross Honsberger - Episodes in Nineteenth and Twentieth Century pp 65). In fact, parallelogram is actually rhombus, so $ED\parallel BC\ .$ Further, midpoints of $ED$ and $BC$ are collinear with $K\ .$

Proof: The parallelogram $AEA'D$ is a rhombus ($AA'$ is angle bisector of angle $C'A'B'$) diagonals are perpendicular. It's easy to see that $AD=DG$ and $AE=EF$ ($F\in AE\cap BC\ ,$ $G\in AD\cap BC$). Since $AG$ and $AF$ are antiparallels with $A'C'$ and $A'B'\ ,$ $K\in BD\cap CE\ .$ From intercept theorem, symmedian point and midpoints of $BC\ ,$ $DE$ are collinear. It's pretty obvious that points $E$ and $D$ lying on midline of triangle $ABC\ .$


PP3. Intr-un plan $\pi$ se dau doua puncte fixe $A$ si $B$ si un punct mobil $M\ .$ Pe semidreptele $(MA$ si $(MB$ se iau punctele $C$ si $D$ astfel incat $MC=p\cdot MA$ si

$MD=q\cdot MB\ ,$ unde $\{p,q\}\subset\mathbb R^*_+\ .$ sunt constante. Aratati ca dreapta care uneste punctul $M$ cu mijlocul segmentului $[CD]$ taie dreapta $AB$ intr-un punct fix $P\ .$


Demonstratie. Daca $L$ este mijlocul segmentului $[CD]\ ,$ atunci $\boxed{\frac {PA}{PB}=\frac {LC}{LD}\cdot \frac {MA}{MB}\cdot\frac{MD}{MC}}=\frac {MA}{MB}\cdot\frac {q\cdot MB}{p\cdot MA}=\frac qp$ (constant) $\Longrightarrow P$ este fix.


PP4. Let an acute $\triangle ABC,$ its circumcircle $\mathbb C(O,R)$ and the intersections $\left\{\begin{array}{c}
D\in BC\cap AO\\\
E\in CA\cap BO\\\
F\in AB\cap CO\end{array}\right\|.$ Prove that $\frac {1}{AD}+\frac {1}{BE}+\frac{1}{CF}=\frac 2R$

Proof 1. Observe that $h_a=b\sin C=2R\sin B\sin C$ and $m\left(\widehat{PAD}\right)=|B-C|.$ Thus, $h_a=AD\cdot \cos (B-C)\implies$ $2R\sin B\sin C=AD\cdot \cos (B-C)\implies$

$\frac {2R}{AD}=\frac {\cos (B-C)}{\sin B\sin C}=$ $1+\cot B\cot C\implies$ $2R\cdot\sum \frac 1{AD}=\sum (1+\cot B\cot C)=4$ $\implies$ $\boxed{\frac 1{AD}+\frac 1{BE}+\frac 1{CF}=\frac 2R}\ (*)\ .$

Proof 2. Apply the theorem of Sines in $\triangle ADC\ :\ \frac {AD}{\sin C}=\frac {AC}{\sin \widehat{ADC}}\iff$ $\frac {AD}{\sin C}=$ $\frac b{\cos(B-C)}\iff$ $\frac {2R}{AD}=\frac {\cos(B-C)}{\sin B\sin C}$ a.s.o. In conclusion, $2R\cdot \sum \frac 1{AD}=$

$\sum \frac {\cos(B-C)}{\sin B\sin C}=$ $\sum\frac {\cos B\cos C+\sin B\sin C}{\sin B\sin C}=$ $\sum\left(\cot B\cot C+1\right)=4\implies$ $2R\cdot \sum \frac 1{AD}=4\implies$ $\sum\frac 1{AD}=\frac 2R\ ,$ i.e. $\boxed{\frac 1{AD}+\frac 1{BE}+\frac 1{CF}=\frac 2R}\ (*)\ .$

Proof 3. Let circumcircle $w=\mathbb C(O,R)$ and $\left\{\begin{array}{ccc}
\{A,X\}=\{A,O\}\cap w\\\\
\{B,Y\}=\{B,O\}\cap w\\\\
\{C,Z\}=\{C,O\}\cap w\end{array}\right\|\ .$ Thus, $\frac {2R}{AD}=\frac {AX}{AD}=$ $\frac{AD+DX}{AD}=$ $1+\frac {DX}{DA}=1+\frac {XB\cdot XC}{AB\cdot AC}=$

$=1+\cot C\cot B\implies$ $\sum\frac {2R}{AD}=\sum\left(1+\cot C\cot B\right)=3+\sum \cot C\cot B=4\implies$ $\boxed{\frac 1{AD}+\frac 1{BE}+\frac 1{CF}=\frac 2R}\ (*)\ .$

Remark. I used two well-known identities $:\ \boxed{\sum\cot B\cot C=1}\ (1)$ and the remarkable property PP1 from here.

Proof 4. The area $S=[ABC]$ is given by $2S=BC\cdot AD\cdot\sin \widehat{ADB}=$ $a\cdot AD\cdot \cos (B-C)=$ $AD\cdot 2R\sin A\cos (B-C)=$ $AD\cdot 2R\sin (B+C)\cos (B-C)=$

$R\cdot AD\cdot (\sin 2B+\sin 2C)\implies$ $2S=R\cdot AD\cdot (\sin 2B+\sin 2C)\implies$ $\frac 1{AD}=\frac {R(\sin 2B+\sin 2C)}{2S}\implies$ $\sum\frac 1{AD}=\frac {\cancel 2R\cdot\sum\sin 2A}{\cancel 2S}=$ $\frac {4\cancel R\prod\sin A}{2R\cancel{^2}\prod\sin A}=\frac 2R\implies$

$\boxed{\frac 1{AD}+\frac 1{BE}+\frac 1{CF}=\frac 2R}\ (*)\ .$
This post has been edited 78 times. Last edited by Virgil Nicula, Nov 25, 2016, 4:13 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a