360. Some problems for the middle school.

by Virgil Nicula, Oct 23, 2012, 9:07 AM

P1. Let an $A$-isosceles $\triangle ABC$ with $AB=AC=k$ such that its orthocenter $H$ belongs to its incircle $w=\mathbb C(I,r)$ , i.e. $HI=r$ . Ascertain its area $S=f(k)$ .

Proof. Is evidently that $H\in (AI)$ . Denote the midpoint $D$ of $[BC]$ and $E\in w\cap AB\ ,\ F\in w\cap AC\ ,\ AF=AE=x$ . Thus, $BH\parallel IE$ and $\triangle BDH\sim\triangle AEI\iff$

$\frac {BD}{AE}=\frac {DH}{EI}=\frac {2r}r=2\implies$ $BF=BD=2x\implies$ $k=AB=AF+BF=x+2x\implies$ $\boxed{k=3x}$ . Therefore, $BC=2\cdot BD\implies$ $\boxed{BC=4x}$ and

$AD^2=AB^2-BD^2=9x^2-4x^2=5x^2\implies$ $\boxed{AD=x\sqrt 5}$ . In conclusion, $S=\frac 12\cdot BC\cdot AD=\frac 12\cdot 4x\cdot x\sqrt 5=2x^2\sqrt 5\implies$ $S=2\left(\frac k3\right)^2\sqrt 5\implies$ $S=\frac {2k^2\sqrt 5}9$ .



P2. Let a square $ABCD$ with $AB=a$ and a circle $w=\mathbb C(A,a)$. For an interior point $P$ of the square and $P\in w$ we know that $PB=b$ and $m\left(\widehat{BPC}\right)=\phi$ . Find $PC=f(b,\phi )$.

Proof. Let $m\left(\widehat{PBC}\right)=x$ and $S\in PB\ ,\ CS\perp BP$ . Thus, $\left\{\begin{array}{ccc}
b & = & 2a\sin x\\\\
a\sin x & = & CS\\\\
CS & = & PC\sin\phi\end{array}\right\|\ \bigodot\implies$ $\boxed{PC=\frac b{2\sin\phi}}.$


P3. Let two secant circles $w_1=\mathbb C\left(O_1,8\right)$ and $w_2=\mathbb C\left(O_2,6\right)$ , where $O_1O_2=12$ and $P\in w_1\cap w_2$ . Consider $Q\in w_1$

and $R\in w_2$ so that $P\in (QR)$ and the line $O_1O_2$ doesn't separate $Q$ and $R$ . Prove that $PQ=PR\implies PQ^2=130$ .


Proof. Let the midpoints $M$ , $X$ , $Y$ of $[O_1O_2]$ , $[PQ]$ , $[PR]$ respectively and $PX=PY=x$ , $PM=m$ . Thus, $PQ=PR=2x$ and observe that

$O_2P=O_2M=6$ , i.e. the triangle $PO_2M$ is $O_2$-isosceles. Denote the midpoint $N$ of $[PM]$ , i.e. $O_2N\perp PM$ . Denote $U\in O_1X\cap O_2N$ and $XO_1=u$ ,

$YO_2=v$ . Thus, $\boxed{u-v=m}$ , i.e. $O_1UPM$ is a parallelogram , i.e. $PU\parallel O_1O_@$ and $R\in O_1O_2\cap w_2$ . Thus, $\boxed{u^2-v^2=8^2-6^2=2\cdot 14}\ (1)$ . Apply

theorem of median $[PM]$ in $\triangle O_1PO_2$ and obtain $PM=\sqrt {14}$ i.e. $\boxed{m=\sqrt {14}}\ (*)$ . Therefore, from $(1)$ obtain that $u^2-v^2=2m^2\iff$ $u+v=2m\iff$

$2u=3m\ \wedge\ 2v=m\iff$ $PQ^2=XY^2=O_1O_2^2-UO_1^2\iff$ $PQ^2=12^2-(u-v)^2=$ $12^2-m^2=144-14\iff$ $PQ^2=130$ .



P4. Let the equilateral triangles $\triangle ABC$ and $\triangle ECD$ so that $C\in (BD)$ and $BD$ doesn't separate $A$ and $E$ . Denote $F\in BE\cap AD$ . Prove that $FA\cdot FE=FC^2$ .

Proof. Observe that $\triangle ACD\ \stackrel{s.a.s}{\equiv}\triangle BCE$ $\implies$ $AD=BE$ and $\left\{\begin{array}{ccc}
\widehat{CAD} & \equiv & \widehat{CBE}\\\\
\widehat{CDA} & \equiv & \widehat{CEB}\end{array}\right\|\implies$ $\left\{\begin{array}{ccc}
\widehat{CAF} & \equiv & \widehat{CBF}\\\\
\widehat{CDF} & \equiv & \widehat{CEF}\end{array}\right\|\implies$ the quadrilaterals

$ABCF$ and $CDEF$ are cyclically $\implies m\left(\widehat{AFC}\right)=\left(\widehat{CFE}\right)=120^{\circ}\ \stackrel{a.a}{\implies}\  \triangle AFC\sim\triangle CFE\implies$ $\frac {FA}{FC}=\frac {FC}{FE}\implies$ $FA\cdot FE=FC^2$ .



P5. Let $\triangle ABC$ and $D\in (BC)$ so that $AD\perp BC\ .$ Suppose that exist $M\in (BD)$ and $N\in (DC)$ so that $MB=MD=2\cdot NC$ and $NM=NA\ .$ Prove that $A=90^{\circ}\ .$

Proof 1. $\left\{\begin{array}{ccccc}
NC=x\ ;\  ND=a-5x\\\\
MB=MD=2x\\\\
NA=NM=a-3x\end{array}\right\|$ $\implies$ $AB^2=AN^2+DB^2-DN^2=(a-3x)^2+(4x)^2-(a-5x)^2=$

$16x^2+2x\cdot (2a-8x)=4ax\implies$ $AB^2=BD\cdot BC\implies$ $\left\{\begin{array}{c}
\triangle DBA\sim\triangle ABC\\\\
(AD\perp BC)\end{array}\right\|\implies AB\perp AC\ .$

Proof 2. $\left\{\begin{array}{ccccc}
NC=x\ ;\  ND=a-5x\\\\
MB=MD=2x\\\\
NA=NM=a-3x\end{array}\right\|$ $\implies$ $AD^2=NA^2-ND^2=(a-3x)^2-(a-5x)^2=4x(a-4x)=DB\cdot DC\implies$ $AD^2=DB\cdot DC\ \stackrel{AD\perp BC}{\implies}\  AB\perp AC.$

Remark. $\boxed{AB^2=4ax}\ ;\ AC^2=$ $AD^2+DC^2=AN^2-DN^2+DC^2=(a-3x)^2-(a-5x)^2+(a-4x)^2\implies$ $\boxed{AC^2=a^2-4ax}$ $\implies$ $AC^2+AB^2=BC^2$ .

Proof 3. Let the midpoints $(P,Q,R)$ of $[MD]$ , $[AM]$ , $[AD]$ respectively. Prove easily that $PQRD$ is a rectangle and $CRQN$ is a parallelogram. Thus, $CR\parallel NQ$ where $NQ$ is

the $N$-median in the $N$-isosceles $\triangle AMN$ , i.e. $NQ\perp AM$ . Hence and $CR\perp AM$ , i.e. $R$ is the orthocenter of $\triangle AMC$ . In conclusion, $AB\parallel MR\perp AC\implies AB\perp AC$ .



P6 (test Elvetia). Find all values of the parameter $a\ne 0$ so that $\{x,y,z\}\subset\mathbb{R}$ verify the system $\left\{\begin{array}{ccc}
x+y & = & a\\\
x^3+y^3 & = & a\\\
x^5+y^5 & = & a\end{array}\right\|\ .$

Proof. $x^3+y^3=(x+y)\left(x^2+y^2\right)-xy(x+y)\implies$ $\boxed{1+xy=x^2+y^2}\ (1)$ and $x^5+y^5=$ $\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2(x+y)$ $\implies$

$1+x^2y^2=$ $x^2+y^2$ $\implies$ $\boxed{\left(x^2-1\right)\left(y^2-1\right)=0}\ (2)\ .$ From the relation $(2)$ obtain that $x\in \{\pm 1\}\ \vee\ y\in\{\pm 1\}$ . Can suppose that $x\in \{\pm 1\}$ .

Therefore $\left\{\begin{array}{ccccccc}
x\ \stackrel{(1)}{=}\ 1 &  \implies & y^2=y & \implies & y\in\{0,1\} & \implies & a\in \{1,2\}\\\\
x\ \stackrel{(1)}{=}\ -1 & \implies & y^2=-y & \implies & y\in\{0,-1\}& \implies & a\in \{-1,-2\}\end{array}\right\|$ . In conclusion, $\boxed{a\ \in\ \{\ \pm 2\ ;\ \pm 1\ \}}$ .



P7. Let $\{a,b,c\}\subset\mathbb R^*$ so that $\left\{\begin{array}{ccc}
a-\frac{1}{b} & = & 3\\\\
b-\frac{1}{c} & = & 4\\\\
c-\frac{1}{a} & = & 5\end{array}\right\|\ .$ Calculate $E\equiv abc-\frac{1}{abc}\ .$

Proof. With the substitution $\left\{\begin{array}{ccc}
x & = & bc\\\
y & = & ca\\\
z & = & ab\end{array}\right\|$ in the well known identity $(x-1)(y-1)(z-1)=xyz-(xy+yz+zx)+(x+y+z)-1$ obtain the chain of the identities:

$(bc-1)(ca-1)(ab-1)=(abc)^2-abc(a+b+c)+(bc+ca+ab)-1\iff$ $\frac {bc-1}c\cdot \frac {ca-1}a\cdot\frac {ab-1}b=abc-(a+b+c)+\left(\frac 1a+\frac 1b+\frac 1c\right)-\frac 1{abc}\iff$

$\left(b-\frac 1c\right)\left(c-\frac 1a\right)\left(a-\frac 1b\right)=\left(abc-\frac 1{abc}\right)-\left(a-\frac 1b\right)-\left(b-\frac 1c\right)-\left(c-\frac 1a\right)\ .$ In conclusion, $4\cdot 5\cdot 3=\left(abc-\frac 1{abc}\right)-(3+4+5)\iff$ $\boxed{abc-\frac 1{abc}=72}\ .$



P8. Let $a,\,b,\,c\in\mathbb{R}$ such that $a-7b+8c=4$ and $8a+4b-c=7\ .$ Find the value of the expression $a^2-b^2+c^2\ .$

Proof. $\left|\begin{array}{c}
a-7b+8c=4\ \odot\ 1\\\\
8a+4b-c=7\ \odot\ 8\end{array}\right|\bigoplus\stackrel{c\uparrow}{\implies} 65a+25b=60\implies \boxed{13a+5b=12}\ (1)\ . $ Similarly $\left|\begin{array}{c}
a-7b+8c=4\ \odot\ 4\\\\
8a+4b-c=7\ \odot\ 7\end{array}\right|\bigoplus$ $\stackrel{b\uparrow}{\implies} 60a+25c=65\implies$

$\boxed{12a+5c=13}\ (2).$ Addition and difference $(1),$ $(2)\ :$ $\left\{\begin{array}{ccc}
25a+5(b+c)=25 & \implies & 5(a-1)=-(b+c)\\\\
a+5(b-c)=-1 & \implies & a+1=5(c-b)\end{array}\right\|\bigodot\implies$ $a^2-1=b^2-c^2\implies a^2-b^2+c^2=1.$



P9 (MO, Rusia). Let $\{a,b\}\subset\in\mathbb{R}^*\ ,\ a\ne b$ such that $\frac{a}{b}+a=\frac{b}{a}+b\ .$ Find the value of the sum $\frac{1}{a}+\frac{1}{b}\ .$

Proof 1. Denote $\frac ab+a=\frac ba+b=k\ .$ Therefore, $\left\{\begin{array}{c}
\frac 1b+1=\frac ka\\\\
\frac 1a+1=\frac kb\end{array}\right\|$ $\implies$ $\left\{\begin{array}{ccc}
\frac 1b-\frac 1a=k\left(\frac 1a-\frac 1b\right) & \implies & \boxed{k=-1}\\\\
\frac 1b+\frac 1a+2=k\left(\frac 1a+\frac 1b\right) & \implies & \frac 1a+\frac 1b=-1\end{array}\right\|\ .$

Proof 2. $\frac{a}{b}+a=\frac{b}{a}+b\iff$ $\frac ab-\frac ba=b-a\iff$ $a^2-b^2=-ab(a-b)\ \stackrel{(a\ne b)}{\iff}\ a+b=-ab\iff$ $\boxed{\frac 1a+\frac 1b=-1}\ .$

Proof 3. $\frac{a}{b}+a=\frac{b}{a}+b\iff$ $\frac {a+ab}b=\frac {b+ab}a=\frac {(a+ab)-(b+ab)}{b-a}=\frac {a-b}{-(a-b)}=-1\implies$ $a+ab=-b\implies a+b=-ab$ $\implies \frac 1a+\frac 1b=-1\ .$



P10 (British M.O.,2008). Let $ABC$ be an $A$-isosceles triangle with $A<90^{\circ},$ the orthocenter $H$ and the circumcircle $O.$ Prove that the circumcenter of $\triangle BOH$ belongs to the side $[AB].$

Proof 1. Denote $X\in (AB)$ so that $HX\perp HB.$ Thus, $m\left(\widehat{OHX}\right)=$ $m\left(\widehat{OHB}\right)-m\left(\widehat{XHB}\right)=$ $\left(180^{\circ}-C\right)-90^{\circ}=$ $90^{\circ}-C=$ $m\left(\widehat{OBX}\right)$ $\implies$

$\widehat{OHX}\equiv\widehat{OBX}$ $\implies$ $OHBX$ is cyclic $\implies $ $m\left(\widehat{XOB}\right)=$ $m\left(\widehat{XHB}\right)=$ $90^{\circ} \implies$ $OX\perp OB$ $\implies$ $O$ and $H$ belong to the circle with the diameter $[BX].$

Proof 2. Suppose w.l.o.g. $A<60^{\circ},$ i.e. $A<B=C\iff O\in (AH).$ Denote $\{X,Y\}\subset (AB)$ so that $HX\perp HB$ and $OY\perp OB.$ Observe that $:$

$\odot\begin{array}{ccccccc}
\nearrow & m\left(\widehat{HBA}\right)=90^{\circ}-A & \implies & BX\cos\widehat{HBA}=BH & \implies & BX\sin A=2R\cos  B & \searrow\\\\
\searrow & m\left(\widehat{OBA}\right)=90^{\circ}-C & \implies & BY\cos\widehat{OBA}=BO & \implies & BY\sin C=R & \nearrow\end{array}\odot$ Therefore, the circumcenter of $\triangle BOH$

belongs to the side $[AB]\iff$ $X\equiv Y\iff$ $BX=BY\iff$ $\frac {2\cos B}{\sin A}=\frac 1{\sin C}\iff$ $\sin A=2\cos B\sin B\iff$ $\sin A=\sin 2B\iff$

$A+2B=180^{\circ},$ what is true. In conclusion, $O$ and $H$ belong to the circle with the diameter $[BX].$ In the case $A>60^{\circ},$ i.e. $H\in (AO)$ the our proof is similarly.



P11 (Thanasis Gakopoulos). Let $ABC$ be a triangle with the incentre $I\ .$ Prove that $A=2B\iff AI+b=a\ .$ Nice remark!

Proof. Denote the circumcircle $w=\mathbb C(O,R)$ and $\{A,S\}=AI\cap w\ .$ Observe that $A=2B\iff$ $b=AC=CS=SB=SI\ ,$

i.e. $AB\parallel CS$ and $a=BC=AS=AI+SI=AI+b\ .$ In conclusion, $\boxed{\ A=2B\iff AI+b=a\ }$ (standard notations).

Remark. Apply the Ptolemy's theorem to the isosceles trapezoid $ABSC\ :\ AC\cdot BS+CS\cdot AB=BC\cdot AS\iff \boxed{\ b^2+bc=a^2\ }\iff A=2B\ .$
This post has been edited 240 times. Last edited by Virgil Nicula, Apr 11, 2018, 3:42 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a