67. Remarkable algebraic/geometrical inequalities (1).

by Virgil Nicula, Jul 22, 2010, 11:12 PM

I. Remarkable inequalities: 0


$ \bigodot\ \boxed {\ a^2+b^2+c^2\ge 4S\sqrt 3\ }$ (Weitzenbock - see here).

Method I. $16S^2=\sum a^2\left(b^2+c^2-a^2\right)$ and the Cebasev's inequality $\implies 48S^2\ \le  \sum a^2\sum\left(b^2+c^2-a^2\right)\ =\ \left(a^2+b^2+c^2\right)^2\ \Longrightarrow\ 4S\sqrt 3\ \le\ a^2+b^2+c^2\ .$

Otherwise. $48S^2=3\cdot\sum\left(a^2+b^2-c^2\right)\left(a^2-b^2+c^2\right)\le$ $ \left[\sum\left(b^2+c^2-a^2\right)\right]^2=$ $\left(a^2+b^2+c^2\right)^2\implies$ $4S\sqrt 3\le a^2+b^2+c^2$ .

Remark. $\left\{\begin{array}{c}
4\sin A\cos B\cos C=\sin 2B+\sin 2C-\sin 2A\\\\
4\sin A\sin B\sin C=\sin 2A+\sin 2B+\sin 2C\\\\
S=2R^2\sin A\sin B\sin C\end{array}\right\|$ $\implies \sum a\cdot\cos B\cos C=$ $2R\cdot \sum \sin A\cos B\cos C=$ $\frac R2\cdot\sum ( \sin 2B+\sin 2C-\sin 2A)=$

$\frac R2\cdot\sum\sin 2A=$ $2R\prod\sin A\implies$ $\boxed{\sum a\cdot\cos B\cos C=\frac SR}\ \ ;\ \ 16S^2=$ $\sum\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)=$

$\sum (2ac\cos B)\cdot(2ab\cos C)\implies$ $4abc\sum a\cos B\cos C=16SR\sum a\cos B\cos C\implies$ $\boxed{\sum a\cos B\cos C=\frac SR}$

Method II. $\sum a^2\ge 4S\sqrt 3$ $ \Longleftrightarrow$ $ \left(\sum a^2\right)^2\ge 3\cdot\left(2\cdot\sum b^2c^2-\sum a^4\right)$ $ \Longleftrightarrow$ $ \ \sum a^4+2\cdot\sum b^2c^2\ge 6\cdot\sum b^2c^2-3\cdot\sum a^4\ \Longleftrightarrow\ \sum a^4\ \ge\ \sum b^2c^2$ what is true.

Method III. $ OL^2\ =\ R^2\ +\ p_w(L)\ =\ R^2-3\cdot\left(\frac {abc}{a^2+b^2+c^2}\right)^2\ \ge\ 0\ \Longrightarrow$ $ R\cdot \sum a^2\ \ge\  abc\sqrt 3$ $ \Longrightarrow$ $ a^2+b^2+c^2\ \ge \frac {4Rpr\sqrt 3}{R}$ $ \Longrightarrow$ $ \boxed {\ 4S\sqrt 3\ \le\ a^2+b^2+c^2\ }\ .$

Method IV. I"ll use the inequality $ R\ge 2r$ thus: $ \left(\sum a^2\right)^2\ge\sum a^2\cdot\sum bc=$ $ \ abc\cdot\sum a^2\cdot\sum\frac 1a\ge 3abc(a+b+c)=24Rp^2r\ge 48p^2r^2=48S^2$ $ \Longrightarrow$

$ a^2+b^2+c^2\ge 4S\sqrt 3\ .$ Using same inequality $ R\ge 2r$ can obtain a stronger inequality. Indeed, $ \left(4S\sqrt 3\right)^2=24p^2r\cdot 2r\le$ $ 24p^2r\cdot R=3\cdot 4Rpr\cdot 2p=$

$ 3abc(a+b+c)\le (ab+bc+ca)^2\Longrightarrow \boxed {\ 4S\sqrt 3\le ab+bc+ca\ }\ .$

Method V. We use the inequality $3r\sqrt 3\le p$ thus : $ 3r\sqrt 3\le p$ $\Longleftrightarrow$ $3S\sqrt 3\le p^2$ $\Longrightarrow$ $12S\sqrt 3\le (a+b+c)^2\le 3\left(a^2+b^2+c^2\right)$ $\Longrightarrow$ $4S\sqrt 3\le a^2+b^2+c^2$ .

Method VI. We use two inequalities $ \left\|\ \begin{array}{c}
 2r\ \le\ R\\\\
 2p\ \le\ 3R\sqrt 3\end{array}\ \right\|\ \Longrightarrow\ 4pr\ \le\ 3R^2\sqrt 3\ .$ Prove easily that $4pr\ \le\ 3R^2\sqrt 3\ \Longleftrightarrow$ $ 4S\sqrt 3\ \le\ 3\cdot\sqrt[3]{a^2b^2c^2}\ .$ But $ 3\cdot\sqrt[3]{a^2b^2c^2}=3\cdot\sqrt[3]{ab\cdot bc\cdot ca}\ \le\ ab+bc+ca\ .$ Therefore, $ \boxed {\  4S\sqrt 3\ \le\ 3\cdot\sqrt[3] {(abc)^2}\ \le\ ab+bc+ca\ \le\ a^2+b^2+c^2\ }$ (the Weitsenbock's inequality is "weakly" ! ).

Method VII. I"ll use the inequality $ p\sqrt 3\le 4R+r\ .$ Indeed, add the inequalities $ \ a^2\ge 4(p-b)(p-c)$ etc. $ \Longrightarrow$

$ \sum a^2\ge 4\sum (p-b)(p-c)=$ $4r(4R+r)\ge 4rp\sqrt 3=4S\sqrt 3$ $ \Longrightarrow$ $ \boxed {\ 4S\sqrt 3\le 4r(4R+r)\le a^2+b^2+c^2\ }\ .$

Method VIII. $ b^2+c^2-a^2=4S\cdot\cot A$ si $ \sum\cot B\cot C=1$ $ \Longrightarrow$ $ \left(\sum\cot A\right)^2\ge 3\sum\cot B\cot C=3\ \Longrightarrow$

$ \sum\cot A\ge\sqrt 3\Longrightarrow$ $ \sum a^2=\sum\left(b^2+c^2-a^2\right)=4S\cdot\sum\cot A\ge 4S\sqrt 3$ $ \Longrightarrow$ $ a^2+b^2+c^2\ge 4S\sqrt 3\ .$

Method IX. $ a^2+b^2\ge 2ab\ge 2ab\cdot\cos\left(C-60^{\circ}\right)\ \Longrightarrow\ a^2+b^2\ge ab\cdot\cos C+ab\sqrt 3\cdot\sin C\ \Longrightarrow$

$ \ 2\left(a^2+b^2\right)-\left(a^2+b^2-c^2\right)\ge 2ab\sqrt 3\cdot\sin C\ \Longrightarrow\ a^2+b^2+c^2\ge 4S\sqrt 3$ because $ \left\|\ \begin{array}{c}
 ab\cdot\sin C=2S\\\\
 2ab\cdot\cos C=a^2+b^2-c^2\end{array}\ \right\|\ .$


Generalization. $ \left\|\ \begin{array}{c}
 m\ >\ 0\\\\
 \phi\in\left(0,\pi \right)\end{array}\ \right\|\ \Longrightarrow\ \boxed {\ \left(1-m\cos\phi\right)\cdot a^2+m\left(m-\cos\phi\right)\cdot b^2+m\cos\phi\cdot c^2\ \ge 4m\sin\phi\cdot S\ }$ with the equality iff $ m=\frac ab$ and $ \phi =C\ .$

Proof. $ a^2+m^2b^2\ge 2mab\ge 2mab\cos (C-\phi )=$ $ \ 2mab\cos C\cos\phi +2mab\sin C\sin\phi =m\cos\phi\left(a^2+b^2-c^2\right)+4mS\sin\phi\ \Longrightarrow$

$ \ \left(1-m\cos\phi\right)\cdot a^2+m\left(m-\cos\phi\right)\cdot b^2+m\cos\phi\cdot c^2\ \ge 4m\sin\phi\cdot S\ .$ we have the equality $\iff \ a=mb$ si $ \cos (C-\phi )=1\iff$

$ m=\frac ab$ and $ \phi =C$ and in this case we find the well-known identity $ \sum a^2\left(b^2+c^2-a^2\right)=16S^2\ .$


Remark. $ 4r(5R-r)\le \sum bc\le 4(R+r)^2\ \Longleftrightarrow\ 16Rr-5r^2\le p^2\le 4R^2+4Rr+3r^2 $ . Thus, exists the following inequalities: $ 36r^2\le 4S\sqrt 3\le\ 6r\sqrt [3]{4Rp^2}\le$

$ 4r(4R+r)\le 3\cdot\sqrt [3]{(abc)^2}\le$ $ \sum a\sqrt {bc}\le \sum bc\le \frac 13\cdot \left(\sum a\right)^2\le \left\{\begin {array}{c}
\frac 49\cdot (4R+r)^2\\\\
\sum a^2\end{array}\right\|$ and $ \frac 13\cdot \left(a+b+c\right)^2\ \le$ $ \left\{\begin {array}{c}
\frac 49\cdot (4R+r)^2\\\\
a^2+b^2+c^2\end{array}\right\| \le$ $ \ 4(2R^2+r^2)\ \le\ 9R^2\ .$



$ \bigodot\ \boxed {\ a^2+b^2+c^2\ge 4S\sqrt 3+(a-b)^2+(b-c)^2+(c-a)^2\ }$ (Hadwiger-Finsler - see here).

Method I. $ \sum a^2\ge \sum (b-c)^2+4S\sqrt 3\ \Longleftrightarrow\ \sum\left[a^2-(b-c)^2\right]\ \ge 4S\sqrt 3\ \Longleftrightarrow$ $ \ \sum (p-b)(p-c)\ \ge\ S\sqrt 3\ .$ Denote $ \left\|\ \begin{array}{c} 
 (p-b)(p-c)=x\\\
 (p-c)(p-a)=y\\\
 (p-a)(p-b)=z\end{array}\ \right\|\ .$

But $ S^2=yz+zx+xy\ .$ Hence $ \sum x\ \ge \sqrt {3(xy+yz+zx)}\ \Longleftrightarrow\ \left(\sum x\right)^2\ \ge 3(xy+yz+zx)$ , what is true.

Method II. I"ll show that the Hadwiger-Finsler's inequality is equivalently with the well-known inequality $ p\sqrt 3\le 4R+r\ .$ Indeed, $ 4S\sqrt 3+\sum (b-c)^2\ \le\ \sum a^2\ \Longleftrightarrow$

$4S\sqrt 3\ \le\ \sum \left[a^2-(b-c)^2\right]\ \Longleftrightarrow$ $ \ 4S\sqrt 3\ \le\ 4\cdot\sum (p-b)(p-c)\ \Longleftrightarrow\ 4pr\sqrt 3\ \le\ 4r(4R+r)\ \Longleftrightarrow\ p\sqrt 3\ \le\ 4R+r\ .$

Method III. Prove easily that $ 2\cdot \sum (p-b)(p-c)=\sum a(p-a) .$ Thus, $ \sum a^2-\sum (b-c)^2=$ $ \ 4\cdot \sum (p-b)(p-c)=2\cdot\sum a(p-a)$ and the inequality

becomes $ \sum a(p-a)\ \ge\ 2S\sqrt 3 .$ But $ \sum a(p-a)\ge 3\cdot\sqrt [3]{abc(p-a)(p-b)(p-c)}=3\cdot \sqrt [3]{4Rp^2r^3}\ .$ I"ll show that $3\cdot\sqrt[3]{4Rp^2r^3}\ \ge\ 2S\sqrt 3\ .$

Indeed, this inequality is equivalently with $ 3R\sqrt 3\ \ge\ 2p .$ Therefore, we proved an stronger inequality, $ \sum a^2\ \ge\ \sum (b-c)^2+6r\cdot\sqrt[3]{4Rp^2}\ .$

Method IV. $ \sum a^2-\sum (b-c)^2=4\cdot\sum (p-b)(p-c)=4S\cdot \sum\tan\frac A2\ \ge 4S\sqrt 3$ because $ \tan\frac x2\ : \ \left(0\ ,\ \pi\right)\rightarrow\mathbb R$ is convex and Jensen's $\implies \sum\tan\frac A2\ \ge\ \sqrt 3\ .$


$ \bigodot$ A strengthening of the Hadwiger-Finsler's inequality: $ \boxed {\ a^{2} + b^{2} + c^{2}\ge 4S \sqrt {3}+\frac {1}{2}\cdot \left(|a - b| + |b - c| + |c - a|\right)^{2}\ }$ .

Proof. Suppose w.l.o.g. $ c\le b\le a$. We need to prove that $ a^2 + b^2 + c^2 - 2(a - c)^2\ge 4\sqrt {3}S$ . I"ll use $ a = y+z$, $ b = z+x$ and $ c = x+y$ ,

where $ x\le y\le z\implies$ $ y(x + y + z) + 3yz\ge 2\sqrt {3xyz(x + y + z)}$ which is true by AM-GM. Prove easily that

reverse of the Hadwiger-Finsley's inequality. i.e. $\boxed{4S\sqrt 3+\sum (b-c)^2\le a^2+b^2+c^2}\le 4S\sqrt 3+3\sum (b-c)^2$ .

Remark.
Here Cezar Lupu & Cosmin Pohoata presented a "strengthening" of the Hadwiger-Finsler's inequality : $ (G1)\ \sum a^2\ \ge\ \sum (b-c)^2+4S\cdot\sqrt {\frac {16R-5r}{4R+r}}\ \Longleftrightarrow$

$ P\le \frac {4R+r}{p}$ , unde $ P=\sqrt {\frac {16R-5r}{4R+r}}\ .$ Denote $ K=\frac 1p\cdot \sqrt {4R^2+4Rr+3r^2}\ .$ Se observa ca $ K\ge 1$ (Gerretsen) si $ P\ge \sqrt 3\ .$ I"ll present a stronger inequality,

$ (G2)\ \boxed {\ \sum a^2\ge \sum (b-c)^2+4S\cdot KP\ }\ \Longleftrightarrow\ \sqrt 3\le P\le \ KP\le \frac {4R+r}{p}\ .$ Indeed, $ KP\le \frac {4R+r}{p}\ \Longleftrightarrow$ $ 4R+r\ge $ $\sqrt {4R^2+4Rr+3r^2}\cdot\sqrt {\frac {16R-5r}{4R+r}}$ $ \Longleftrightarrow$

$\boxed {\ (4R^2+4Rr+3r^2)(16R-5r)\ \le\ (4R+r)^3\ }$ , i.e. $ 64R^3+44R^2r+28Rr^2-15r^3\le $ $64R^3+48R^2r+12Rr^2+r^3\ \Longleftrightarrow\ 4r(R-2r)^2\ge 0$ ,

what is true. An weak inequality: $ 9(R+r)\ \le\ 16R-5r\ \le\ \frac {(4R+r)^3}{4R^2+4Rr+3r^2}\ \le\ 9(2R-r)\ .$ Thus, exist the inequalities with the Hadwiger - Finsler's :

$ \boxed {\ 4S\sqrt 3\ \le\  4SP\ \le\ 4SKP\le\ 4r(4R+r)=\sum a^2-\sum (b-c)^2\ }\ \Longleftrightarrow$ $ \sqrt 3\ \le\ P\ \le\ KP\ \le\ \frac {4R+r}{p}\ .$ Some applications of the inequality $ (G2)$ which appear
here.

$ \boxed {A1}\ \ \sum\frac {a}{r_a}\ \ge\ 2KP\ \ge\ 2P\ \ge\ 2\sqrt 3\ .$

$ \boxed {A2}\ \ \sum \tan\frac A2\ \ge\ KP\ \ge\ P\ \ge\ \sqrt 3\ .$

$ \boxed {A3}\ \ \sum\frac {1}{h_ar_a}\ \ge\ \frac {KP}{S}\ \ge\ \frac PS\ \ge \frac {\sqrt 3}{pr}\ \ge\ \frac {9}{p^2}\ .$

$ \boxed {A4}\ \ \sum\frac {1}{b+c-a}\ \ge \frac {KP}{2r}\ \ge\ \frac {P}{2r}\ \ge\ \frac {\sqrt 3}{2r}\ \ge\ \frac {9}{a+b+c}\ .$

$ \boxed {A5}\ \ \sum\frac {a^2}{b+c-a}\ge 3R\cdot KP\ \ge$ $ 3R\cdot P\ge 3R\sqrt 3\ .$

$ \boxed {A6}\ \ (a+b+c)^2\ \le\ (a+b+c)\cdot$ $ \sum\frac {bc}{b+c-a}\ \le\ \frac {(5R-2r)(4R+r)^2}{2(2R-r)}\ .$

$ \boxed {A7}\ \ \frac {a}{b+c-a}+\frac {b}{c+a-b}+\frac {c}{a+b-c}\ \ge\ \frac {b+c-a}{a}$ $ +\frac {c+a-b}{b}+\frac {a+b-c}{c}+\frac {R-2r}{R}\cdot\frac {8R-r}{4(2R-r)}\ .$

$ \boxed {A8}\ \ \sum\frac {1}{a(b+c-a)}\ \ge\ \frac {5R-2r}{8R^2r}$ $ \Longleftrightarrow$ $ \sum\frac {1}{1+\cos A}\ \ge\ 2+\frac {R-2r}{2R}$ $ \Longleftrightarrow$ $ \sum\frac {(a-b)(a-c)}{b+c-a}\ \ge\ p\cdot\frac {R-2r}{2R}\ge 0\ .$

I used the identities : $ \sum\ \frac {1}{b+c-a}=\frac {4R+r}{2pr}\ ;\ \sum$ $\frac {b+c-a}{a}=\frac {p^2+r^2-8Rr}{2Rr}\ ;$ $\sum \frac {a}{b+c-a}=\frac {2R-r}{r}\ \ge\ 3\ ;\ \sum $ $a^2(p-b)(p-c)=4p^2r(R-r)\ ;$

$\sum\frac {a^2}{b+c-a}=\frac {2p(R-r)}{r}\ ;$ $\sum a(p-a)=2r(4R+r)\ ;\  \sum$ $\frac {(b+c)(2a-b-c)}{b+c-a}=\frac {2p(R-2r)}{r}\ ;\ \sum $ $\frac {(b+c)^2}{b+c-a}=8p+\sum\frac {(b+c)(2a-b-c)}{b+c-a}=$ $\frac {2p(R+2r)}{r}\ ;$

$\boxed {\sum a\cdot\sum\frac {bc}{b+c-a}=p^2+(4R+r)^2}\ .$

Remark. $ 4S\sqrt 3\ \le\ \left\{\begin{array}{c}
6r\sqrt [3]{4Rp^2}\\\\
4SP\ \le\ 4SKP\end{array}\right\|\le\ 4r(4R+r)$ $\le 3\cdot\sqrt [3]{(abc)^2}\le$ $ \sum a\sqrt {bc}\le$ $ \sum bc\le\frac 13\cdot \left(\sum a\right)^2\le$ $\left\{ \begin {array}{c}
\frac 49\cdot (4R+r)^2\\\\
a^2+b^2+c^2\end{array}\right\|\ \le\ \ 4(2R^2+r^2)\ \le\ 9R^2\ .$


$\bigodot$ Blundon's inequality. $\boxed {2R^{2} + 10Rr - r^{2} - 2(R - 2r)\sqrt {R(R - 2r)}\ \leq\ p^{2}\leq 2R^{2} + 10Rr - r^{2} + 2(R - 2r)\sqrt {R(R - 2r)}}\ .$

Proof. Denote $ \left\|\begin{array}{c}
\alpha\equiv \alpha (R,r,p)=2R^2+10Rr-r^2\\\\
\beta\equiv (R,r,p)=2(R-2r)\sqrt {R(R-2r)}\end{array}\right\|$ . Then the Blundon's inequality becomes $ \boxed {\ \left|p^2-\alpha \right|\le\beta\ }\ .$ This remarkable inequality has proved by E. Rouche in 1851.

It is the fundamental inequality of $\triangle ABC$ . Let $ \left\|\begin{array}{c}
s_1=a+b+c=2p\\\\
s_2=ab+bc+ca=p^2+r^2+4Rr\\\\
s_3=abc=4Rpr\end{array}\right\|$ and symmetric homogenous polynomial $ f(a,b,c)\equiv (a - b)^{2}(b - c)^{2}(c - a)^{2}=$

$ s_{1}^{2}s_{2}^{2} - 4s_{2}^{3} - 4s_{1}^{3}s_{3} + 18s_{1}s_{2}s_{3} - 27s_{3}^{2} =$ $ = - 4r^{2}[(p^{2} - 2R^{2} - 10Rr + r^{2})^{2} - 4r(R - 2r)^{3}]\ge 0$ $ \implies$ $ (p^{2} - 2R^{2} - 10Rp + r^{2})^{2}\leq 4R(R - 2r)^{3}$ .


Remark. Prove easily that $ \left\|\begin{array}{c}
ab+bc+ca=p^2+r(4R+r)\\\\
a^2+b^2+c^2=2\left[p^2-r(4R+r)\right]\\\\
a^3+b^3+c^3=2p\left[p^2-3r(2R+r)\right]\\\\
a^4+b^4+c^4=2\cdot\left(\sum bc\right)^2-16p^2r(2R+r)\end{array}\right\|$ si $ \left\|\begin{array}{c}
x=p-a>0\\\\
y=p-b>0\\\\\
z=p-c>0\end{array}\right\|$ $ \Longleftrightarrow$ $ \left\|\begin{array}{c}
a=y+z\\\\
b=z+x\\\\
c=x+y\end{array}\right\|$ $ \Longleftrightarrow$ $ \left\|\begin{array}{c}
x+y+z=p\\\\
xy+yz+zx=r(4R+r)\\\\
xyz=pr^2\end{array}\right\|\ ,$ i.e. $ x$ , $ y$ , $ z$

verify the equation $ t^3-pt^2+r(4R+r)t-pr^2=0\ .$ This chain of the equivalencies allows passing (directly and inverse) from one inequality $ f(x,y,z)\ge 0$ with positive

$ \{x,y,z\}$ to an inequality $ h(a,b,c)\ge 0$ and finally to $ g(R,r,p)\ge 0$ what can be proved with the fundamental Blundon's inequality. Thus can prove the following chain $: $

$r(16R-5r)\ \le\ \left|\begin{array}{c}
\frac {2r(2R-r)(4R+r)}{R}\\\
r(16R - 5r) + \frac {r^2(R - 2r)}{R}\end{array}\right|\ \le$ $ p^2\le \frac {R(4R+r)^2}{2(2R-r)}\le\ \left|\begin{array}{c}
4R(R+r)+3r^2\\\
\frac {R(4R+r)^2}{2(2R-r)}+\frac {3r^2(R-2r)}{2(2R-r)}\end{array}\right|\ .$ For $ \left|\begin{array}{c}
u\equiv u(R,r,p)\\\\
v\equiv v(R,r,p)\end{array}\right|$ say :

$ \boxed {\ \begin{array}{ccccc}
u\le p^2 & \Longleftrightarrow & u\le\alpha & \wedge & \alpha -u\ge \beta\\\\
p^2\le v & \Longleftrightarrow & v\ge \alpha & \wedge & v-\alpha \ge \beta
\end{array}\ }$ , where $ \left|\begin{array}{c}
\alpha =2R^2+10Rr-r^2\\\\
\beta =2(R-2r)\sqrt {R(R-2r)}\\\\
\left|p^2-\alpha\right|\ \le\ \beta\end{array}\right|\ .$ Therefore, $ \boxed {\ \begin{array}{c}
\underline {\mathrm {Example\ I}}\blacktriangleright\ \ p^2\ \ge\ \frac {2r(2R-r)(4R+r)}{R}=u\\\\
\alpha -u=\left(2R^2+10Rr-r^2\right)-\frac {2r(2R-r)(4R+r)}{R}\\\\
\alpha -u=\frac 1R\cdot (R-2r)(2R^2-2Rr-r^2)\ge 0\\\\
\alpha -u\ge\beta\ \Longleftrightarrow\ 2R^2-2Rr-r^2\ge 2R\sqrt {R(R-2r)}\\\\
t=\frac Rr\ge 2\ \Longrightarrow\ \left(2t^2-2t-1\right)^2\ge 2t^3(t-2)\\\\ 
4t+1\ge 0\ .\ \ \ \mathrm{O\ .\ K\ .}\end{array}\ }$ $ \blacktriangleleft\blacktriangleright$ $ \boxed {\ \begin{array}{c}
\underline {\mathrm {Example\ II}}\blacktriangleright\ \ p^2\ \le\ \frac {R(4R+r)^2}{2(2R-r)}=v\\\\
v-\alpha=\frac {R(4R+r)^2}{2(2R-r)}-\left(2R^2+10Rr-r^2\right)\\\\
v-\alpha =\frac {(R-2r)\left(8R^2-12Rr+r^2\right)}{2(2R-r)}\ge 0\\\\
v-\alpha \ge \beta\ \Longleftrightarrow\ 8R^2-12Rr+r^2\ge 4(2R-r)\sqrt {R(R-2r)}\\\\ 
t=\frac Rr\ge 2\ \implies\ \left(8t^2-12t+1\right)^2\ge 16t(t-2)(2t-1)^2\\\\
(4t+1)^2\ge 0\ .\ \ \ \mathrm{O\ .\ K\ .}\end{array}\ }$ . In conclusion, in these examples proved : $ \frac {2r(2R-r)(4R+r)}{R}\ \le\ p^2\ \le\ \frac {R(4R+r)^2}{2(2R-r)}\ .$


Example III. (Gazeta Matematica B, 12, 2003). For any $ m\in (0,1]$ exists the bilateral inequality $ u\ \le\ p^2\ \le\ v$ , where

$ \left\|\begin{array}{c}
u=\frac 1m\cdot\left[- (1 - m)^{2}R^{2} + 2(m^{2} + 5m + 2)Rr - (4 + m)r^{2}\right]=-mR(R-2r)+\alpha-\frac 1m\cdot (R-2r)^2\\\\
v=\frac 1m\cdot\left[(m + 1)^{2}R^{2} - 2(m^{2} - 5m + 2)Rr + (4 - m)r^{2}\right]=mR(R-2r)+\alpha +\frac 1m\cdot (R-2r)^2\end{array}\right\|\ .$


Proof. Observe that $ u+v=2\alpha$ . Denote $ \delta =\frac {v-u}{2}\ .$ Remain to show only $ \delta\ \ge\ \beta\ .$ But $ \delta=mR(R-2r)+\frac 1m\cdot (R-2r)^2=\frac 1m\cdot (R-2r)\left[\left(1+m^2\right)R-2r\right]\ge 0\ .$

In conclusion, $ \delta\ge\beta\ \Longleftrightarrow\ \left(1+m^2\right)R-2r\ \ge\ 2m\sqrt {R(R-2r)}$ $ \Longleftrightarrow$ $ \left[\left(1+m^2\right)R-2r\right]^2-\left[2m\sqrt {R(R-2r)}\right]^2\ge 0$

$ \Longleftrightarrow$ $ \left(1-m^2\right)^2R^2-4\left(1-m^2\right)Rr+4r^2=\left[\left(1-m^2\right)R-2r\right]^2\ \ge\ 0$ , what is true.


Example IV. If numbers $ x$ , $ y$ , $ z$ are pozitive, then exists the inequality $ 8(xyz)^2\ge \prod (y+z)\cdot\prod (y+z-x)\ \ (*)\ .$

Method 1. For positive $ x$ , $ y$ , $ z$ exists $ \triangle\ ABC$ so that $ a+b+c=2p$ and $ \boxed {\ \begin {array}{c}
x=p-a\\\
y=p-b\\\
z=p-c\end{array}\ }\ .$ Observe that $ y+z=a$ , $ y+z-x=2a-p$ a.s.o. and the inequality $ (*)$

becomes $8\left[(p-a)(p-b)(p-c)\right]^2+$ $abc\cdot (p-2a)(p-2b)(p-2c)\ge 0\ \ (1)\ .$ I"ll use the well-known inequalities$ abc=4Rpr$ , $ ab+bc+ca=p^2+r^2+4Rr$ and

$ (p-a)(p-b)(p-c)=pr^2\ .$ Thus, the inequality$ (1)$ is equivalently with $ 8\left(pr^2\right)^2+4Rpr\cdot\left[p^3-p^2\cdot 2(a+b+c)+p\cdot 4(ab+bc+ca)-8abc\right]\ge 0$

$ \Longleftrightarrow$ $ 8p^2r^4+4Rpr\left[p^3-4p^3+4p(p^2+r^2+4Rr)-8\cdot 4Rpr\right]\ge 0$ $ \Longleftrightarrow$ $ 2r^3+R\left[p^2-4r(4R-r)\right]\ge 0$ $ \Longleftrightarrow$ $ \boxed A\equiv 4r(4R-r)-\frac {2r^3}{R}\le p^2\ \ (2)\ .$ Therefore,

$ (*)\ \Longleftrightarrow\ (1)\ \Longleftrightarrow\ (2)\ .$ I"ll use the fundamental inequality Blundon (only left) : $ \boxed L\equiv 2R^2+10Rr-r^2-2(R-2r)\sqrt {R(R-2r)}\ \le\ p^2\ \ (3)\ .$ I"ll show

$ A\le L\ .$ Indeed, $ A\le L\ \Longleftrightarrow\ 4r(4R-r)-\frac {2r^3}{R}\le 2R^2+10Rr-r^2-2(R-2r)\sqrt {R(R-2r)}$ $ \Longleftrightarrow$ $ 2(R-2r)\sqrt {R(R-2r)}\le 2R^2-6Rr+3r^2+\frac {2r^3}{R}$ $ \Longleftrightarrow$

$ 2R(R-2r)\sqrt {R(R-2r)}\le 2R^3-6R^2r+3Rr^2+2r^3$ $ \Longleftrightarrow$ $ 2R(R-2r)\sqrt {R(R-2r)}\le (R-2r)(\left(2R^2-2Rr-r^2\right)$ $ \Longleftrightarrow$ $ 2R\sqrt {R(R-2r)}\le 2R^2-2Rr-r^2$ $ \Longleftrightarrow$

$ 4R^3(R-2r)\le 4R^4-4R^2r(2R+r)+r^2\left(2R+r\right)^2$ , what is true. Thus, $ A\le L\le p^2\ \implies\ A\le p^2$ , i.e. $ (2)$ is true. Since $ (*)\Longleftrightarrow (1)\Longleftrightarrow (2)$ , i.e. $ (*)$ is true.

Method 2. For the positive $ x$ , $ y$ , $ z$ exists the real $ u$ , $ v$ , $ w$ so that $ \boxed {\ \begin {array}{c}
x=v+w\\\
y=w+u\\\
z=u+v\end{array}\ }\ .$ Observe that $ y+z=2u+v+w$ , $ y+z-x=2u$ a.s.o. and the inequality $ (*)$ becomes

$ uvw\prod (2u+v+w)\ \le\ \prod (v+w)^2\ .$ Thus, $ \left|\begin{array}{c}
3uvw(u+v+w)\ \le\ (uv+vw+wu)^2\\\\
27\prod(2u+v+w)\ \le\ 64(u+v+w)^3\\\\
8(uv+vw+wu)(u+v+w)\ \le\ 9(u+v)(v+w)(w+u)\\\\
8(uv+vw+wu)(u+v+w)\ \le\ 9(u+v)(v+w)(w+u)\end{array}\right|\ \bigodot\ \Longrightarrow$ $uvw\prod (2u+v+w)\ \le\ \prod (v+w)^2\ .$


Remark (Mateescu Constantin). Blundon's inequality is, in fact, a simple consequence of the triangle inequality !

$\boxed{\ \triangle\ ABC\ \implies\ 2R^2+10Rr-r^2-2(R-2r)\sqrt{R(R-2r)}\ \le\ s^2\ \le\ 2R^2+10Rr-r^2+2(R-2r)\sqrt{R(R-2r)}\ }$

Short proof. I will use the well-known distances in a triangle $\boxed{\begin{array}{cccc}
IN^2=s^2+5r^2-16Rr \\ \\ 
IO=\sqrt{R(R-2r)}\ \ ;\ \ ON=R-2r\end{array}}$ , where $I$ , $O$ and $N$ are the incenter , circumcenter and the Nagel's point

of the triangle $ABC$ . Now, one can easily show that Blundon's inequality reduces to $\boxed{\boxed{\ OI-ON\ \le\ IN\ \le\ OI+ON\ }}$ , which is just the triangle inequality applied in $\triangle\ NIO$ .


$ \bigodot\ \boxed {\ x^2\left(b^2+c^2-a^2\right)+y^2\left(c^2+a^2-b^2\right)+z^2\left(a^2+b^2-c^2\right)\ge 16ST\ }$ (Neuberg-Pedoe's inequality - see here), where $ (x,y,z)$ are the sides of $ \triangle XYZ$ with the area $ T\ .$

Proof. $ x^2b^2+y^2a^2\ge 2xyab\ge 2xyab\cdot\cos (C-Z)\Longrightarrow$ $ \ x^2b^2+y^2a^2-2xyab\cdot\cos C\cos Z\ge 2xyab\cdot\sin C\sin Z\Longrightarrow$ $ 2\left(x^2b^2+y^2a^2\right)-2xy\cos Z\cdot 2ab\cos C\ \ge$

$\ 4\cdot ab\sin C\cdot xy\sin Z$ $\Longrightarrow$ $2\left(x^2b^2+y^2a^2\right)-\left(x^2+y^2-z^2\right)\left(a^2+b^2-c^2\right)\ge 16ST$ $ \Longrightarrow\sum x^2\left(b^2+c^2-a^2\right)\ \ge 16ST\ .$ We have the equality $\Longleftrightarrow $ $xb=ya$ and

$ \cos (C-Z)=1$ $\Longleftrightarrow$ $\frac xa=\frac yb$ and $ C=Z$ $\Longleftrightarrow$ $\triangle ABC\sim\triangle XYZ$ .


Remark. Let $ (x,y,z)$ , $ \left(\sqrt {\frac {a^2+x^2}{2}},\sqrt{\frac {b^2+y^2}{2}},\sqrt {\frac {c^2+z^2}{2}}\right)$ be sides for $\triangle XYZ$ , $\triangle MNP$ with the areas $ T$ , $ R$ respectively $\implies$ exists Oppenheim's inequality $\boxed {2R\ge S+T}$ .

Indeed, observe that $ 16S^2=\sum a^2\left(b^2+c^2-a^2\right)$ , $ 16T^2=\sum x^2\left(y^2+z^2-x^2\right)$ si $ W\equiv\sum x^2\left(b^2+c^2-a^2\right)=\sum a^2\left(y^2+z^2-x^2\right)\ .$ Therefore,

$ 64R^2=\sum\left(a^2+x^2\right)\cdot\left[\left(b^2+c^2-a^2\right)+\left(y^2+z^2-x^2\right)\right]=$ $ \sum a^2\left(b^2+c^2-a^2\right)+$ $ \sum a^2\left(y^2+z^2-x^2\right)+$ $ \sum x^2\left(b^2+c^2-a^2\right)+$ $ \sum x^2\left(y^2+z^2-x^2\right)\ \implies$

$64R^2=16\left(S^2+T^2\right)+2W\ .$ Using the Neuberg-Pedoe's inequality $ W\ge 16ST$ obtain that $ 4R^2\ge S^2+T^2+2ST\ \implies\ 2R\ \ge S+T\ .$ Prove similarly the extension of

the Oppenheim's inequality : if $ m>0$ , $ n>0$ , $ m+n=1$ and $ (x,y,z)$ , $ \left(\ \sqrt {ma^2+nx^2}\ ,\ \sqrt {mb^2+ny^2}\ ,\ \sqrt {mc^2+nz^2}\right)$ are the lengths of the sides of $ \triangle XYZ$ ,

$ \triangle MNP$ with the areas $ T$ , $ R$ respectively, then there is the inequality $ \boxed {\ R\ \ge\ mS+nT\ }\ .$


See here and here
This post has been edited 111 times. Last edited by Virgil Nicula, Feb 25, 2019, 7:27 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a