378. Some metrical relations.

by Virgil Nicula, Jun 11, 2013, 7:36 PM

PP1. Let $C$-isosceles $\triangle ACB$ with the incenter $I$ and circumcenter $O$ . Let the lengths $l_b$ and $l_c$ of the the $B$-bisector

and the $C$-bisector respectively. Prove that $l_b=2l_c\iff$ $MI=MO$ , where $M$ is the midpoint of $[AB]$ .


Method 1. Let $A=2x$ where $x<45^{\circ}$ , $X$ on the $A$-bisector $[AD]$ , where $D\in (BC)$ . Thus, $XM\parallel BC$ , $AD=2\cdot CM\iff XD=CM$ . Thus, $CDMX$

is an isosceles trapezoid, where $m\left(\widehat {BCM}\right)=m\left(\widehat {ADC}\right)=3x$ . So $B+m\left(\widehat {BCM}\right)=2x+3x=90^{\circ}\iff$ $x=18^{\circ}$ , i.e. $\boxed{A=B=36^{\circ}\ ,\ C=108^{\circ}}$ .

Thus, $m\left(\widehat{AOB}\right)=360^{\circ}-2C= 144^{\circ}$ , i.e. $AIBO$ is a rhombus, i.e. $MI=MO$ .

Method 2. Let $A=2x$ , where $x<45^{\circ}$ , the $A$-bisector $[AD]$ , where $D\in (BC)$ . Thus, $2=\frac {AD}{CM}=$ $\frac {AD}{AC}\cdot \frac {AC}{CM}=$ $\frac {\sin C}{\sin \widehat{ADC}}\cdot \frac {1}{\sin A}=$ $\frac {\sin 4x}{\sin 3x}\cdot\frac {1}{\sin 2x}=$ $\frac {2\sin 2x\cos 2x}{\sin 3x\sin 2x}\implies$

$\sin 3x=\cos 2x\iff$ $x=18^{\circ}\iff$ $\boxed{A=B=36^{\circ}\ ,\ C=108^{\circ}}$ . In conclusion, $m\left(\widehat{AOB}\right)=360^{\circ}-2C= 144^{\circ}$ , what means that $AIBO$ is a rhombus, i.e. $MI=MO$ .

Method 3 (metric). Denote $A$-bisector $AD$ , where $D\in (BC)$ and $CA=CB=a$ , $AB=c$ . Thus, $AD=2\cdot CM\iff$ $AD^2=4\cdot CM^2\iff$ $\frac {ac^2(2a+c)}{(a+c)^2}=4a^2-c^2\iff$ $ac^2=(2a-c)\left(a^2+2ac+c^2\right)\iff$ $2a^3+3a^2c-ac^2-c^3=0\iff$ $(2a+c)\left(a^2+ac-c^2\right)=0\iff$ $\frac ac=\frac {-1+\sqrt 5}{2}\iff\cos A=\frac {AM}{AC}=$ $\frac {c}{2a}=\frac {1}{-1+\sqrt 5}=$

$\frac {1+\sqrt 5}{4}=$ $\cos 36^{\circ}\implies x=18^{\circ}\iff$ $\boxed{A=B=36^{\circ}\ ,\ C=108^{\circ}}$ . In conclusion, $m\left(\widehat{AOB}\right)=360^{\circ}-2C= 144^{\circ}$ , what means that $AIBO$ is a rhombus, i.e. $MI=MO$ .


PP2. Prove that in any $\triangle ABC$ have $l_b=2h_a\iff \cos\frac {A-C}{2}=\frac a{2b}\iff$ $2\sin\frac B2=\frac a{a+c}\iff$ $a^3c+\left(a^2-c^2\right)^2=b^2(a+c)^2$ , where $h_a\ ,\ l_b$ are the lengths of the

$A$-altitude and the $B$-bisector respectively. Particular case. If $b=c$ , then there is the chain of equivalencies $l_b=2h_a\iff \frac ac=\frac {1+\sqrt 5}{2}\iff$ $\boxed{B=C=36^{\circ}\ ,\ C=108^{\circ}}$ .


Proof. Denote $P\in BC$ so that $AP\perp BC$ and $L\in BC$ so that $B\in (CL)$ and $BL=BA$ . Since $ BD\parallel AL$ obtain that $\frac {BD}{AL}=\frac {CB}{CL}$ . Thus, $\boxed{l_b=2h_a}\iff$

$\frac {2h_a}{AL}=\frac {a}{a+c}\iff$ $\sin\frac B2=\frac {AP}{AL}\iff$ $\boxed{2\sin\frac B2=\frac a{a+c}}\ (*)$ . Observe that $\sin\widehat{LAC}=\sin\left(\frac B2+C\right)\iff$ $\sin\widehat{LAC}=\cos\frac {A-C}{2}$ . Apply the theorem

of Sines
in $\triangle LAC\ :\ \frac {CL}{\sin \widehat{LAC}}=\frac {AC}{\sin\frac B2}\iff$ $\frac {a+c}{\cos\frac {A-C}{2}}=\frac b{\sin \frac B2}\stackrel{(*)}{\iff}$ $\boxed{\cos\frac {A-C}{2}=\frac a{2b}}$ . Using $\sin^2\frac B2=\frac {(s-a)(s-c)}{ac}$ obtain that $2\sin\frac B2=\frac a{a+c}\iff$

$\frac {4(s-a)(s-c)}{ac}=\frac {a^2}{(a+c)^2}\iff$ $\left[b^2-(a-c)^2\right](a+c)^2=a^3c\iff$ $\boxed{a^3c+\left(a^2-c^2\right)^2=b^2(a+c)^2}$ .


PP3. In $\triangle ABC$ let $\{M,P\}\subset BC$ so that $MB=MC$ and $AP\perp BC$ . Prove that $l_b=2m_a\iff$

$m\left(\widehat{MAP}\right)=\frac {|A-3C|}{2}$ , where $m_a\ ,\ l_b$ are the lengths of the $A$-median and the $B$-bisector.


Proof. Denote the midpoint $X$ of the $B$-bisector $[BD]$ , where $D\in (AC)$ . Thus, $XM\parallel AC$ and $BD=2\cdot AM\iff XD=AM$ . Therefore, $ADMX$ is an isosceles

trapezoid, i.e. $m\left(\widehat {CAM}\right)=m\left(\widehat {ADB}\right)=$ $\frac B2+C$ . In conclusion, $\left(\widehat {MAP}\right)=\left(\widehat {MAC}\right)-\left(\widehat {CAM}\right)=$ $\left|\left(90^{\circ}-C\right)-\left(\frac B2+C\right)\right|\implies$ $m\left(\widehat{MAP}\right)=\frac {|A-3C|}{2}$ .



PP4. Let $ ABC$ be a triangle and $ M\in (AC)$, $ N\in (AB)$ be two points for which denote $ P\in BM\cap CN$. Prove that :

$ 1\blacktriangleright$ $ ANPM$ is tangential $ \Longrightarrow$ $ PB-PC=AB-AC$ $ \Longleftrightarrow$ $ NB+NC=MB+MC$.

$ 2\blacktriangleright$ If for $ ANPM$ denote the tangent points $ E\in AC$, $ F\in AB$, $ U\in CN$, $ V\in BM$, then exists $\left\{\begin{array}{c}
X\in UF\cap VE\cap BC\\\\
\frac{XB}{XC}=\frac{c-x}{b-x}\end{array}\right\|$, where $ x=AF=AE$.

$ 3\blacktriangleright$ Exists $w(O)$ which is tangent to sidelines of $AMPN$ and $O\in\mathrm{ext}(AMPN) \Longrightarrow$ $AN+NP=AM+MP$ and in this case $AMPN$ is an extangentially.


See here => http://jl.ayme.pagesperso-orange.fr/Docs/Urquhart.pdf "the most elementary theorem of Euclidean geometry".

Proof. Suppose that $ANPM$ is a tangential quadrilateral and denote the tangent points $ E\in AC$, $ F\in AB$, $ U\in CN$, $ V\in BM$ . Therefore:

$1.1\blacktriangleright\ PB-PC=(BV-PV)-(CU-PU)=$ $BV-CU=BF-CE=(AB-AF)-(AC-AE)=AB-AC\implies$ $PB-PC=AB-AC$ .

$1.2\blacktriangleright\ NB+NC=(BF-NF)+(CU+NU)=$ $BF+CU=BV+CE=$ $(BM-MV)+(CM+ME)=BM+CM\implies$ $NB+NC=BM+CM$ .

$2\blacktriangleright$ Let $\left\{\begin{array}{c}
X_1\in FU\cap BC\\\
X_2\in EV\cap BC\end{array}\right|$ and apply Menelaos' $:\ \left\{\begin{array}{cccc}
\overline{FUX_1}/\triangle BCN\ : & \frac {FN}{FB}\cdot \frac {X_1B}{X_1C}\cdot\frac {UC}{UN}=1 & \implies & \frac {X_1B}{X_1C}=\frac {FB}{UC}=\frac {FB}{EC}\\\\
\overline{EVX_2}/\triangle BCM\ : & \frac {EM}{EC}\cdot \frac {X_2C}{X_2B}\cdot\frac {VB}{VM}=1 & \implies & \frac {X_2B}{X_2C}=\frac {VB}{EC}=\frac {FB}{EC}\end{array}\right\|$ $\implies$ $X_1\equiv X_2\equiv X$ and $\frac {XB}{XC}=\frac{c-x}{b-x}$ .

$3\blacktriangleright\ AN+NP=(AF-NF)+(NU-PU)=$ $(AE-NU)+(NU-PV)=$ $AM+ME-(MV-MP)=AM+MP\implies$ $AN+NP=AM+MP$ .



PP5. Let $ C_{1}(O_{1})$ , $ C_{2}(O_{2})$ be exterior circles and let $ C(O)$ be a circle exterior tangent to circles $ C_{1}$ , $ C_{2}$ in $ A_{1}$ , $ A_{2}$ respectively. An exterior common tangent to the

circles $ C_{1}$ , $ C_{2}$ touches these in $ T_{1}$ , $ T_{2}$ respectively so that $ O_{1}O_{2}$ separates $ A_{1}$ , $ T_{1}$ . Prove that $ A_{1}A_{2}T_{2}T_{1}$ is cyclic and $ A_{1}A_{2}\cap  T_{1}T_{2}\cap O_{1}O_{2}\ne\emptyset$ are concurrently.


Proof. $\left\{\begin{array}{c}
m\left(\widehat{O_1A_1T_1}\right)=m\left(\widehat{O_1T_1Q_1}\right)=x_1\\\\
m\left(\widehat{O_2A_2T_2}\right)=m\left(\widehat{O_2T_2A_2}\right)=x_2\\\\
m\left(\widehat{OT_1T_2}\right)=m\left(\widehat{OT_2T_1}\right)=x\end{array}\right|$ $\implies$ $odot\begin{array}{cccccc}
\nearrow\ m\left(\widehat{A_1T_1T_2}\right)+m\left(\widehat{A_1A_2T_2}\right) & = & \left(180^{\circ}-x_1-x\right)+\left(90^{\circ}-x_2\right) & = & 270^{\circ}-\left(x_1+x_2+x\right) & \searrow\\\\
\searrow\ m\left(\widehat{A_2T_2T_1}\right)+m\left(\widehat{A_2A_1T_1}\right) & = & \left(180^{\circ}-x_2-x\right)+\left(90^{\circ}-x_1\right) & = & 270^{\circ}-\left(x_1+x_2+x\right) & \nearrow\end{array}\odot$

Therefore,$m\left(\widehat{A_1T_1T_2}\right)+m\left(\widehat{A_1A_2T_2}\right)=m\left(\widehat{A_2T_2T_1}\right)+m\left(\widehat{A_2A_1T_1}\right)$ $\implies$ $A_1T_1T_2A_2$ is a cyclical quadrilateral. Denote $T\in A_1A_2\cap O_1O_2$ and apply

the Menelaus's theorem to the points $\{T,T_1,T_2\}$ and $\triangle O_1OO_2\ :\ \frac {OO_1}{OO_2}\cdot\frac {T_2O_2}{T_2O}\cdot\frac {T_1O}{T_1O_1}=$ $\frac {R_1}{R_2}\cdot\frac {R_2}{R}\cdot\frac {R}{R_1}=1$ $\implies$ $T\in T_1T_2$ $\implies$ $A_{1}A_{2}\cap  T_{1}T_{2}\cap O_{1}O_{2}\ne\emptyset$ .



PP6. Let a rectangle $ABCD$ and $E\in (BC)$ , $F\in (CD)$ so that $\triangle AEF$ is equilateral. Prove that $[ABE]=X\ ,\ [ADF]=Y\ ,\ [CEF]=Z\implies$ $\boxed{X+ Y= Z}\ (*)$ .

Proof. Denote $\left\{\begin{array}{cc}
m\left(\widehat{BAE}\right)=a\ ;\  m\left(\widehat{BEA}\right)=b\\\\
m\left(\widehat{DFA}\right)=c\ ;\  m\left(\widehat{CFE}\right)=d\\\\
m\left(\widehat{DFA}\right)=e\ ;\  m\left(\widehat{DAF}\right)=f\end{array}\right\|$ . Observe that $\left\{\begin{array}{cc}
a+f=30^{\circ}\ ;\ a+b=90^{\circ}\\\\
b+c=120^{\circ}\ ;\ c+d=90^{\circ}\\\\
d+e=120^{\circ}\ ;\ e+f=90^{\circ}\end{array}\right\|\implies$ $\left\{\begin{array}{cc}
b=90^{\circ} -a\\\
c=30^{\circ}+a\\\
d=60^{\circ}-a\\\
e=60^{\circ}+a\\\
f=30^{\circ}-a\end{array}\right\|$ . Suppose w.l.o.g. $AE=EF=FA=1$ .

Thus, $X+Y=Z\iff$ $\sin a\sin b+\sin e\sin f=\sin c\sin d\iff$ $\sin a\cos a+\cos (30^{\circ}-a)\sin (30^{\circ}-a)=\sin (30^{\circ}+a)\cos (30^{\circ}+a)\iff$

$\sin 2a+\sin (60^{\circ}-2a)=\sin (60^{\circ}+2a)$ $\iff$ $2\sin 30^{\circ}\cos(30^{\circ}-2a)=\sin (60^{\circ}+2a)\iff$ $\cos(30^{\circ}-2a)=\sin (60^{\circ}+2a)$ , what is truly.


Extension. A rectangle $ABCD$ , $E\in (BC)$ , $F\in (CD)$ . Then $:\ \left\{\begin{array}{c}
[ABE]=X\ ,\ [ADF]=Y\ ,\ [CEF]=Z\\\\
m\left(\widehat{AFE}\right)=\alpha\ ,\ m\left(\widehat{AEF}\right)=\beta\ ,\ m\left(\widehat{EAF}\right)=\gamma\end{array}\right\|\implies$ $\boxed{X\cot \alpha + Y\cot\beta = Z\cot\gamma}\ (*)$

Proof 1. Denote $\left\{\begin{array}{c}
AD=BC=a\\\\
AB=CD=b\\\\
BE=x\ ;\ DF=y\end{array}\right\|$ and $\left\{\begin{array}{ccc}
AE=m & \implies & m^2=b^2+x^2\\\\
AF=n & \implies & n^2=a^2+y^2\\\\
EF=p & \implies & p^2=(a-x)^2+(b-y)^2\end{array}\right\|$ . Is well-known that $\frac {\cot\alpha}{n^2+p^2-m^2}=$ $\frac {\cot \beta}{m^2+p^2-n^2}=$ $\frac {\cot\gamma}{m^2+n^2-p^2}=$

$\frac 1{4\cdot [AEF]}$ , where $[AEF]$ is the area of $\triangle AEF$ . Prove easily that $\left\{\begin{array}{c}
n^2+p^2-m^2=a^2+y^2-ax-by\\\\
m^2+p^2-n^2=b^2+x^2-ax-by\\\\
m^2+n^2-p^2=ax+by\end{array}\right\|$ . The relation $(*)$ becomes

$X\left(n^2+p^2-m^2\right)+$ $Y\left(m^2+p^2-n^2\right)=$ $Z\left(m^2+n^2-p^2\right)\iff$ $bx\left[\left(a^2+y^2\right)-(ax+by)\right]+$ $ay\left[\left(b^2+x^2\right)-(ax+by)\right]=$

$(a-x)(b-y)\left(ax+by\right)\iff$ $bx\left(a^2+y^2\right)+ay\left(b^2+x^2\right)=$ $(ab+xy)(ax+by)$ , what is truly. In conclusion, $(*)$ is truly.

Remark. I used $\boxed{b^2+c^2-a^2=4S\cot A}$ in $\triangle ABC$ , where $S=[ABC]$ .Indeed, $b^2+c^2-a^2=2bc\cos A=$ $2bc\sin A\cot A=$ $4S\cot A\implies$ $\boxed{4S=\left(b^2+c^2-a^2\right)\tan A}$

Proof 2 With same notations from the upper proof show that the identity $(*)$ using the following relations $\overline{1,3}\ :$

$\blacktriangleright\ \cot\alpha =\cot\left(\widehat{CEF}+\widehat{DAF}\right)=$ $\frac {1-\tan\widehat{CEF}\tan\widehat{DAF}}{\tan\widehat{CEF}+\tan\widehat{DAF}}=$ $\frac {1-\frac {b-y}{a-x}\cdot\frac ya}{\frac {b-y}{a-x}+\frac ya}\implies$ $\boxed{\cot\alpha =\frac {a^2+y^2-(ax+by)}{ab-xy}}\ (1)$ .

$\blacktriangleright\ \cot\beta =\cot\left(\widehat{BAE}+\widehat{CFE}\right)=$ $\frac {1-\tan\widehat{BAE}\tan\widehat{CFE}}{\tan\widehat{BAE}+\tan\widehat{CFE}}=$ $\frac {1-\frac xb\cdot\frac {a-x}{b-y}}{\frac xb+\frac {a-x}{b-y}}\implies$ $\boxed{\cot\beta =\frac {b^2+x^2-(ax+by)}{ab-xy}}\ (2)$ .

$\blacktriangleright\ \cot\gamma =\cot\left(\widehat{AEB}-\widehat{DAF}\right)=$ $\frac {1+\tan\widehat{AEB}\tan\widehat{DAF}}{\tan\widehat{AEB}-\tan\widehat{DAF}}=$ $\frac {1+\frac bx\cdot\frac ya}{\frac bx-\frac ya}\implies$ $\boxed{\cot\gamma =\frac {ax+by}{ab-xy}}\ (3)$ .

Proof 3. Let $\left\{\begin{array}{cc}
m\left(\widehat{BAE}\right)=a\ ;\  m\left(\widehat{BEA}\right)=b\\\\
m\left(\widehat{DFA}\right)=c\ ;\  m\left(\widehat{CFE}\right)=d\\\\
m\left(\widehat{DFA}\right)=e\ ;\  m\left(\widehat{DAF}\right)=f\end{array}\right\|$ . Observe that $\left\{\begin{array}{c}
\alpha =180^{\circ}-(d+e)\\\\
\beta =180^{\circ}-(b+c)\\\\
\gamma =90^{\circ}-(a+f)\end{array}\right\|\ ,\ \frac {AE}{\sin \alpha}=$ $\frac {AF}{\sin\beta}=\frac {EF}{\sin\gamma}$ and $a+b=c+d=e+f=90^{\circ}$ .

Therefore, $\left\{\begin{array}{c}
X\cot\alpha =\frac 14\left(\frac {AE}{\sin\alpha}\right)^2\sin a\sin b\sin 2\alpha=-\frac 18\left(\frac {AE}{\sin\alpha}\right)^2\sin 2a\sin 2(d+e)\\\\
Y\cot\beta =\frac 14\left(\frac {AF}{\sin\beta}\right)^2\sin e\sin f\sin 2\beta=-\frac 18\left(\frac {AF}{\sin\beta}\right)^2\sin 2e\sin 2(b+c)\\\\
Z\cot \gamma=\frac 14\left(\frac {EF}{\sin\gamma}\right)^2\sin c\sin d\sin 2\gamma=\frac 18\left(\frac {EF}{\sin\gamma}\right)^2\sin 2c\sin 2(a+f)\end{array}\right\|$ . Obtain that $X\cot\alpha +Y\cot\beta =Z\cot\gamma\iff$

$\sin 2a\sin 2(d+e)+\sin 2e\sin 2(b+c) +\sin 2c\sin 2(a+f)=0$ $\iff$ $\sin 2a\sin 2(c-e)+\sin 2e\sin 2(a-c) +\sin 2c\sin 2(e-a)=0$ $\iff$

$\cos 2(a-c+e)-\cos (a+c-e)+\cos 2(-a+c+e)-$ $\cos 2(a-c+e)+\cos 2(a+c-e)-\cos 2(-a+c+e)=0$ , what is truly.



PP7. Let $\triangle ABC$ and an interior point $P$ for which $\left\{\begin{array}{c}
D\in AP\cap BC\\\\
E\in BP\cap CA\\\\
F\in CP\cap AB\end{array}\right\|$ and $\frac 1{DP}=\frac 1{DA}+\frac 1{DB}+\frac 1{DC}$ . Prove that $DE\perp DF$ .

Proof. Denote $\left\{\begin{array}{cc}
DB=b\ ; & DC=c\\\\
PA=a\ ; & PD=d\end{array}\right\|$ . Thus, $\frac 1{DP}=\frac 1{DA}+\frac 1{DB}+\frac 1{DC}\iff$ $\frac 1d=\frac 1{a+d}+\frac 1b+\frac 1c\iff$ $\boxed{abc=d(b+c)(a+d)}\ (*)$ . Apply the Menelaus' theorem to $:$

$\left\{\begin{array}{cccccccc}
\overline{BPE}/\triangle ADC\ : & \frac {BD}{BC}\cdot\frac {EC}{EA}\cdot\frac {PA}{PD}=1 & \implies & \frac {b}{b+c}\cdot \frac {EC}{EA}\cdot\frac ad=1 & \implies & \frac {EA}{EC}=\frac {ab}{d(b+c)}\ \stackrel {(*)}{=}\ \frac {a+d}{c} & \implies & \frac {EA}{EC}=\frac {DA}{DC}\\\\
\overline{CPF}/\triangle ABD\ : & \frac {CD}{CB}\cdot\frac {FB}{FA}\cdot\frac {PA}{PD}=1 & \implies & \frac {c}{b+c}\cdot \frac {FB}{FA}\cdot\frac ad=1 & \implies & \frac {FA}{FB}=\frac {ac}{d(b+c)}\ \stackrel{(*)}{=}\ \frac {a+d}{b} & \implies & \frac {FA}{FB}=\frac {DA}{DB}\end{array}\right\|$ $\implies$ $\left\{\begin{array}{c}
\widehat{EDA}\equiv\widehat{EDC}\\\\
\widehat{FDA}\equiv\widehat{FDB}\end{array}\right\|\implies DE\perp DF$ .



PP8. Let the $C$-right-angled $\triangle ABC$ and its $A$-excircle $w=C(I_a,r_a)$ . Denote $\left\{\begin{array}{ccc}
P\in BC\cap w & ; & T\in CA\cap w\\\\
Q\in AB\cap w & ; & M\in QP\cap AC\end{array}\right\|$

and $\{A,N\}=AP\cap w$ . Prove that $\boxed{NQ\parallel AC\iff MA=MT\iff\tan A=\frac 34}$ .


Proof. Denote $CM=a$ . Thus, $NQ\parallel AC\iff$ $m(<NAT)=m(<QNA)=$ $ m(<BPQ)= m(<BQP)=m(CPM)=x$ and $B=2x$ , i.e. $A=90-2x$ . Since

$AQM\sim PAM$ we get $\frac {AM}{PM}=\frac {QM}{AM }$ , i.e. $MA^2= MP.MQ= MT^2\iff$ $MA=MT=a+R$ and $CA=2a+R$ . So $CMP\sim CPA\iff$ $\tan x= \frac {CM}{CP}=\frac {CP}{CA}$

$\iff$ $\tan x=\frac aR=\frac R{2a+R}\iff$ $2a^2+aR-R^2=0\iff$ $a=\frac R2\iff$ $\tan x=\frac 12$ . Thus have $\tan A=\cot 2x=$ $\frac {1-\tan^2x}{2\tan x}\iff$ $\tan A=\frac 34$ .



PP9. Let an isosceles trapezoid $ABCD$ with $AB\parallel CD$ so that $[CD]$ is a diameter of its circumcircle $w=C(O,R)$ .

For $E\in w$ so that $AB$ separates $E$ and $O$ , let $\left\{\begin{array}{c}
F\in ED\cap AB\\\\
G\in EC\cap AB\end{array}\right\|$ . Prove that $\frac {AF\cdot BG}{FG}$ is constant.


Proof 1 (metric). Let $\left\{\begin{array}{ccc}
\delta_{CD}(A)=\delta_{CD}(B)=h<R & ; & CD-AB=2d\ ,\ d<R\\\\
X\in (CD)\ ,\ FX\perp CD & ; & AF=x\ ,\ DX=d+x\\\\
Y\in (CD)\ ,\ GY\perp CD & ; & BG=y\ ,\ CY=d+y\end{array}\right\|$ . Thus, $h^2=BC^2-d^2\implies$ $h^2=2Rd-d^2\implies$

$\boxed{h^2+d^2=2Rd}\ (1)$ and $\triangle DFX\sim\triangle GCY\implies$ $\frac {DX}{FX}=\frac {GY}{CY}\implies$ $(d+x)(d+y)=h^2$ $\implies$ $\boxed{xy=h^2-d^2-d(x+y)}\ (2)$ . Therefore,

$FG=CD-(DX+CY)=$ $2R-[2d+(x+y)]\implies$ $FG=2(R-d)-(x+y)\implies$ $\frac {AF\cdot BG}{FG}=$ $\frac {xy}{2(R-d)-(x+y)}\implies$ $\frac {AF\cdot BG}{FG}=d$

because $d[2(R-d)-(x+y)]=2Rd-2d^2-d(x+y)\stackrel{(1)}{=}$ $h^2+d^2-2d^2-d(x+y)=h^2-d^2-d(x+y)\stackrel{(2)}{=}xy$ .

Proof 2. Let $\left\{\begin{array}{c}
45^{\circ}<m\left(\widehat{EDC}\right)=x<90^{\circ}\\\\
\delta_{CD}(A)=\delta_{CD}(B)=h<R\\\\
CD-AB=2d\ ,\ d<R\end{array}\right\|$ . Thus, $h^2=BC^2-d^2\implies$ $h^2=d(2R-d)\implies$ $\boxed{h^2+d^2=2Rd}\ (*)$ and $\frac {h}{AF+d}=\tan x=\frac {GB+d}{h}\implies$

$\odot\begin{array}{ccc}
\nearrow & AF=h\cot x-d & \searrow\\\\
\searrow & BG=h\tan x-d & \nearrow\end{array}\odot\implies$ $FG=AB-(AF+BG)=$ $2(R-d)-[h(\tan x+\cot x)-2d]\implies$ $FG=2R-h(\tan x+\cot x)$ .

In conclusion, $\frac {AF\cdot BG}{FG}=\frac {h^2+d^2-hd(\tan x+\cot x)}{2R-h(\tan x+\cot x)}\stackrel{(*)}{\implies}$ $\boxed{\frac {AF\cdot BG}{FG}=d}$ (constant).

Particular case. $h=24\ ,\ R=25\ \stackrel{(*)}{\implies}\  d^2-50d+24^2=0$ with $\Delta '=25^2-24^2=7^2\implies$

$\odot\begin{array}{ccccc}
\nearrow & d_1=25-7 & \implies & d_1=18<R & \searrow\\\\
\searrow & d_2=25+7 & \implies & d_2=32\not <R & \nearrow\end{array}\odot\implies $ $d=18\implies$ $\frac {AF\cdot BG}{FG}=18$ .

Proof 3 (Cristhian Centeno). $\left\{\begin{array}{ccc}
\delta_{CD}(A)=\delta_{CD}(B)=h<R & ; & CD-AB=2d\ ,\ d<R\\\\
X\in (CD)\ ,\ FX\perp CD & ; & AF=x\ ,\ DX=d+x\\\\
Y\in (CD)\ ,\ GY\perp CD & ; & BG=y\ ,\ CY=d+y\end{array}\right\|$ . So $h^2=BC^2-d^2\implies$ $h^2=2Rd-d^2\implies$

$\boxed{h^2+d^2=2Rd}\ (1)\ ,\ FG=$ $CD-(DX+CY)=$ $2R-[2d+(x+y)]\implies$ $\boxed{FG=2(R-d)-(x+y)}\ (2)$ . Denote $L\in CD$ so that $FL\parallel EC$ . Prove

easily that $FG=XY=LC\ ,\ \boxed{XL=YC}\ (3)$ and $FL\perp  FD\implies $ $FX^2=XD\cdot XL\stackrel{(3)}{\implies}$ $FX^2=XD\cdot YC\implies$ $ h^2=(d+x)(d+y)\stackrel{(1)}{\implies}$

$d^2+d(x+y)+xy=2Rd-d^2\implies$ $xy=d[2(R-d)-(x+y)]\stackrel{(2)}{\implies}$ $xy=d\cdot FG\implies$ $\frac {AF\cdot BG}{FG}=d$ (constant).



PP10. Let $\triangle ABC$ and $M\in (AC)$ . Consider $E\in (BC)$ and $F\in (BA)$ so that $[ME$ and $[MF$ are the $M$-symmedians in $\triangle BMC$ and $\triangle BMA$ respectively.

Denote $\left\{\begin{array}{ccc}
P\in AE\cap MF\ ; & W\in BP\cap AC\ ; & X\in CF\cap BM\\\\
R\in CF\cap ME\ ; & V\in BR\cap AC\ ; & Y\in AE\cap BM\end{array}\right\|$ . Prove that : $MA\cdot\frac {XB}{XM}=MC\cdot\frac {YB}{YM}\ ;\ \frac {MC}{MA}=$ $\sqrt[3]{\frac {VC}{VM}\cdot\frac {WM}{WA}}\ ;\ PR\parallel AC\ ;\ \frac {VC}{VM}\cdot\frac {WA}{WM}\ge 4$ .


Proof. Denote $\frac {MA}{m}=\frac {MC}{1}=\frac {AC}{m+1}$ . Apply the Menelaus' theorem to $:$

$\overline {CXF}/\triangle ABM\ :\ \frac {CM}{CA}\cdot\frac {FA}{FB}\cdot\frac {XB}{XM}=1$ $\implies$ $\frac {XB}{XM}=\frac {CA}{CM}\cdot\frac {FB}{FA}=$ $\frac {m+1}{1}\cdot\frac {MB^2}{MA^2}$ $\implies$ $\frac {XB}{XM}=$ $\frac {(m+1)^3}{m^2}\cdot\left(\frac {MB}{AC}\right)^2\ .$

$\overline {AYE}/\triangle CBM\ :\ \frac {AM}{AC}\cdot\frac {EC}{EB}\cdot\frac {YB}{YM}=1$ $\implies$ $\frac {YB}{YM}=\frac {AC}{AM}\cdot\frac {EB}{EC}=$ $\frac {m+1}{m}\cdot\frac {MB^2}{MC^2}$ $\implies$ $\frac {YB}{YM}=$ $\frac {(m+1)^3}{m}\cdot\left(\frac {MB}{AC}\right)^2\ .$

Thus, the relation $MA\cdot\frac {XB}{XM}=MC\cdot\frac {YB}{YM}\iff$ $m\cdot\frac {XB}{XM}=\frac {YB}{YM}$ , what is evidently. Apply Ceva's theorem to $R$ and $P$ in the mentioned $\triangle BMC$ and $\triangle BMA$ respectively :

$\blacktriangleright\ R/\triangle BMC\ :\ \frac {VM}{VC}$ $\cdot\frac {EC}{EB}\cdot\frac {XB}{XM}=1$ $\implies$ $\frac {VC}{VM}=\frac {EC}{EB}\cdot\frac {XB}{XM}=$ $\frac {MC^2}{MB^2}\cdot \frac {(m+1)^3}{m^2}\cdot\left(\frac {MB}{AC}\right)^2=$ $\frac {(m+1)^3}{m^2}\cdot\left(\frac {MC}{AC}\right)^2$ $\implies$ $\frac {VC}{VM}=\frac{m+1}{m^2}\ .$

$\blacktriangleright\ P/\triangle BMA\ :\ \frac {WM}{WA}\cdot\frac {FA}{FB}\cdot\frac {YB}{YM}=1$ $ \implies$ $\frac {WA}{WM}=\frac {FA}{FB}\cdot\frac {YB}{YM}=$ $\frac {MA^2}{MB^2}\cdot \frac {(m+1)^3}{m}\cdot\left(\frac {MB}{AC}\right)^2=$ $\frac {(m+1)^3}{m}\cdot\left(\frac {MA}{AC}\right)^2\implies$ $\frac {WA}{WM}=m(m+1)\ .$

In conclusion, $\frac {VC}{VM}\cdot\frac {WM}{WA}=$ $\frac{m+1}{m^2}\cdot\frac 1{m(m+1)}=$ $\frac 1{m^3}=\left(\frac {MC}{MA}\right)^3\implies$ $\frac {MC}{MA}=\sqrt[3]{\frac {VC}{VM}\cdot\frac {WM}{WA}}\ .$ Thus, $PR\parallel AC\iff$ $\frac {PB}{PW}=\frac {RB}{RV}\ \stackrel{(\mathrm{Aubel})}{\iff}$ $\frac {FB}{FA}+\frac {YB}{YM}=$

$\frac {EB}{EC}+\frac {XB}{XM}\iff$ $\frac {MB^2}{MA^2}+\frac {(m+1)^3}{m}\left(\frac {MB}{AC}\right)^2=$ $\frac {MB^2}{MC^2}+\frac {(m+1)^3}{m^2}\cdot\left(\frac {MB}{AC}\right)^2\iff$ $\frac {1}{m^2}+\frac {(m+1)^3}{m}\left(\frac {1}{m+1}\right)^2=$ $\frac {1}{1^2}+\frac {(m+1)^3}{m^2}\cdot\left(\frac {1}{m+1}\right)^2$

$\iff$ $\frac 1{m^2}+\frac {m+1}{m}=1+\frac {m+1}{m^2}$ , what is truly. Observe that $\frac {VC}{VM}\cdot\frac {WA}{WM}=$ $\frac{m+1}{m^2}\cdot m(m+1)=$ $\frac {(m+1)^2}{m}=\left(m+\frac 1m\right)+2\ge 2+2\implies$ $\frac {VC}{VM}\cdot\frac {WA}{WM}\ge 4$ .



PP11 (Edson Curahua). Let $w=C(O,1)$ be a semicircle with the diameter $[AB]$ . For a point $C\in (AB)$ define

the semicircles $w_1=C(P,x)$ , $w_2=C(Q,y)$ with the diameters $[AC]\ ,$ $[CB]$ respectively so that $0<y\le\frac 12\le x<1$ .

Construct the circle $\rho=C(R,r)$ which is interior tangent to $w$ and is exterior tangent to $w_1$ and $w_2$ . Prove thst the distance $\delta_{AB}(R)=2r$ .


Proof. Observe that $\boxed{x+y=1}\ ,\ \left\{\begin{array}{c}
OA=OB=PQ=1\\\\
AP=PC=OQ=x\\\\
QC=QB=OP=y\end{array}\right\|$ and $\left\{\begin{array}{cc}
OC=x-y\ ; & RO=1-r\\\\
RP=x+r\ ; & RQ=y+r\end{array}\right\|$ . Apply Stewart's relation in $\triangle PRQ\ :\ RP^2\cdot OQ+$ $RQ^2\cdot OP=$

$RO^2\cdot PQ+OP\cdot OQ\cdot PQ\iff$ $x(x+r)^2+y(y+r)^2=(1-r)^2+xy\iff$ $\left(x^3+y^3\right)+2r\left(x^2+y^2\right)+r^2(x+y)=(1-r)^2+xy\iff$

$1-3xy+2r(1-2xy)+r^2=r^2-2r+1+xy\iff$ $\boxed{xy=\frac {r}{1+r}}\ .$ Denote $\left\{\begin{array}{c}
a=PQ=x+y\\\\
b=RP=x+r\\\\
c=RQ=y+r\end{array}\right\|$ . If $2s=a+b+c$ , then $\left\{\begin{array}{cc}
s=r+1\ ; & s-a=r\\\\
s-b=y\ ; & s-c=x\end{array}\right\|$ and the area

$S=[PRQ]=\sqrt{s(s-a)(s-b)(s-c)}\implies$ $S=\sqrt{xyr(r+1)}\stackrel{(*)}{\implies} \boxed{S=r}$ . In conclusion, the distance $\delta_{AB}(R)$ from the point $R$ to the line $AB$ is given by the relation

$2S=PQ\cdot\delta_{AB}(R)$ , i.e. $\boxed{\delta_{AB}(R)=2r}$ . Prove easily that $0<r\le\frac 13$ and $r=\frac 13\iff xy$ is $\max\iff x=y=\frac 12$ .



PP12 (Ruben Auqui Caceres). Let $s=C(O,1)$ be a semicircle with the diameter $[AB]$ and a point $C\in s$ for which denote $D\in (AO)$ so that

$CD\perp AB$ and $CD=h$ . Consider the incircle $(K,r)\ ,\ 2r<1$ of $\triangle BCD$ and the circle $(L,r)$ which is interior tangent to $s$ in the point $P$

and which is tangent to the rays $[DA$ , $[DC$ in the points $X$ , $Y$ respectively. Prove that $\frac {PC}{PA}=\frac 85$ .


Proof. Denote $OD=x<1$ and from the $X$- right $\triangle OXL$ obtain that $OL^2=OX^2+XL^2\iff$ $(1-r)^2=(r+x)^2+r^2\iff$ $\boxed{r=-(1+x)+\sqrt{2(1+x)}}\ (*)$ .

Prove easily that $\left\{\begin{array}{ccc}
DA & = & 1-x\\\\
DB & = & 1+x\\\\
DC & = & \sqrt{1-x^2}\end{array}\right\|$ and $\left\{\begin{array}{c}
a=\sqrt{2(1+x)}\\\\
b=\sqrt{2(1-x)}\end{array}\right\|$ . The inradius of $\triangle BCD$ is given by the relation $2r+a=DB+DC\stackrel{(*)}{\iff}$

$2\left[-(1+x)+\sqrt{2(1+x)}\right]+\sqrt{2(1+x)}=$ $1+x+\sqrt{1-x^2}\iff$ $3\sqrt{2(1+x)}=$ $\sqrt{1-x^2}+3(1+x)\iff$ $3\sqrt 2=$ $\sqrt{1-x}+3\sqrt{1+x}\iff$ $\boxed{x=\frac 7{25}}$ .

Therefore, $\boxed{\frac a4=\frac b3=\frac c5=\frac 25}\ (1)$ and $\frac h{12}=\frac r4=\frac 2{25}$ . Denote $\phi =m\left(\widehat{AOP}\right)$ . Thus, $\tan\phi =\frac {XL}{XO}=\frac r{r+x}$ i.e. $\tan\phi =\frac 8{15}\iff$ $\sin\phi =\frac 8{17}\ \wedge\ \cos\phi =\frac {15}{17}$ .

Therefore, $PA=2\sin\frac {\phi}{2}\iff$ $PA^2=2\left(1-\cos\phi\right)\iff$ $\boxed{PA=\frac 2{\sqrt {17}}}$ . Apply the Ptolemy's theorem to $APCB\ :\ a\cdot PA+c\cdot PC=b\cdot PB\stackrel{(1)}{\iff}$

$4\cdot PA+5\cdot PC=3\cdot \sqrt{AB^2-PA^2}\iff$ $4\cdot\frac 2{\sqrt {17}}+5\cdot PC=3\cdot\sqrt{4-\frac 4{17}}\iff$ $8+5\sqrt{17}\cdot PC=3\cdot 2\cdot 4\iff$ $\boxed{PC=\frac {16}{5\sqrt{17}}}$ . In conclusion, the ratio $\frac {PC}{PA}=\frac 85$ .



PP13. Let a rectangle $ABCD$ with $AB=b$ , $AD=a$ and the circle $w=C(O,r)$ with the diameter $[BC]$ .

For $P\in w$ so that $BC$ separates $P$ and $A$ let $\left\{\begin{array}{cc}
E\in PA\cap BC\ ; & BE=x\\\\
F\in PD\cap BC\ ; & CF=y\end{array}\right\|$ . Prove that $\boxed{\frac {x+y}{a}+\frac {\sqrt{xy}}{b}=1}\ (*)$ .


Proof. Denote $\left\{\begin{array}{ccccc}
G\in BC & , & PG\perp BC &  ; & PG=h\\\\
GB=u & , & GC=v &  ; & GB+GC=a\end{array}\right\|\implies$ $\frac b{h+b}=$ $\frac xu=\frac yv=$ $\frac {x+y}{u+v}=\frac {x+y}{a}=$ $\sqrt{\frac {xy}{uv}}=\frac {\sqrt{xy}}{h}\implies$ $\frac {b}{h+b}=\frac {\sqrt{xy}}h=\frac {x+y}a\implies$

$\left\{\begin{array}{ccc}
\frac 1h+\frac 1b=\frac 1{\sqrt{xy}}\\\\
a\sqrt{xy}=h(x+y)\end{array}\right\|\implies$ $\frac {x+y}a=\frac {\sqrt{xy}}h=\sqrt{xy}\cdot\left(\frac 1{\sqrt{xy}}-\frac 1b\right)=$ $1-\frac {\sqrt{xy}}b\implies$ $\boxed{\frac {x+y}{a}+\frac {\sqrt{xy}}{b}=1}$ . Particular case $:\ a=2b\implies$ $(*)$ becomes $\sqrt x+\sqrt y=\sqrt a$ .



PP14. Let $P\in\mathrm{ext}(ABCD)$ so that $AD$ separates $P$ , $B$ and exist $\left\{\begin{array}{c}
M\in PB\cap (AD)\\\\
N\in PC\cap (AD)\end{array}\right\|$ , where I denoted $(XY)$ - an open interval. Prove that $[PAB]\cdot [PCD]=[PBC]\cdot [PAD]\iff (A,M,N,D)$ is an harmonical division, i.e. $\frac {MA}{MN}=\frac {DA}{DN}$ what means that $M$ , $D$ are harmonical conjugate w.r.t. $A$ , $N$ .

Proof. Let $\left\{\begin{array}{cc}
PA=a\ ; & PB=b\\\\
PC=c\ ; & PD=d\end{array}\right\|$ and $\left\{\begin{array}{c}
m\left(\widehat{APB}\right)=x\\\\
m\left(\widehat{BPC}\right)=y\\\\
m\left(\widehat{CPD}\right)=z\end{array}\right\|$ . Thus, $[PAB]\cdot [PCD]=[PBC]\cdot [PAD]$ $\iff$ $ab\sin x\cdot cd\sin z=$ $bc\sin y\cdot ad\sin(x+y+z)$ $\iff$

$\boxed{\sin x\sin z=\sin y\sin (x+y+z)}\ (*)$ . But $\frac {MA}{MN}=\frac {DA}{DN}$ $\iff$ $\frac {PA\cdot\sin x}{PN\cdot\sin y}=$ $\frac {PA\cdot\sin (x+y+z)}{PN\cdot\sin z}$ $\iff (*)$ . Thus, $\sin x\sin z=\sin y\sin (x+y+z)$ $\iff$

$\cos (x-z)-\cos(x+z)=$ $\cos (x+z)-\cos (x+2y+z)$ $\iff$ $\cos (x-z)+\cos (x+2y+z)=$ $2\cos (x+z)$ $\iff$ $\boxed{\cos(y+x)\cos (y+z)=\cos (x+z)}$ .



PP15 (lemma). Let $ ABCD$ be a convex quadrilateral for which denote $ I\in AC\cap BD$ . Consider $ X\in (BC)$ , $ Y\in (AD)$ . Then $ \boxed {\ I\in XY\ \Longleftrightarrow\ \frac {IA}{IC}\cdot\frac {IB}{ID} = \frac {XB}{XC}\cdot\frac {YA}{YD}\ }$ .

Proof. Denote $ \left\|\begin{array}{ccc} m(\widehat{XIB}) = \alpha & ; & m(\widehat {XIC}) = \beta \\
 \\
m(\widehat {YIA}) = \gamma & ; & m(\widehat {YID}) = \delta\end{array}\right\|$ , where $ \alpha + \beta = \gamma + \delta$ . Using the well-known relations $ \left\|\begin{array}{c} \frac {XB}{XC} = \frac {IB}{IC}\cdot\frac {\sin \alpha}{\sin\beta} \\
 \\
\frac {YA}{YD} = \frac {IA}{ID}\cdot\frac {\sin \gamma}{\sin\delta}\end{array}\right\|$

obtain equivalencies $:\ \frac {IA}{IC}\cdot\frac {IB}{ID} = \frac {XB}{XC}\cdot\frac {YA}{YD}$ $ \Longleftrightarrow$ $ \frac {IA}{IC}\cdot\frac {IB}{ID} =$ $ \frac {IB}{IC}\cdot\frac {\sin \alpha}{\sin\beta}\cdot\frac {IA}{ID}\cdot\frac {\sin \gamma}{\sin\delta}$ $ \Longleftrightarrow$ $ \sin \alpha\cdot\sin \gamma = \sin\beta\cdot\sin \delta$ $ \Longleftrightarrow$

$ \cos (\alpha - \gamma ) - \cos (\alpha + \gamma ) = \cos (\beta - \delta ) - \cos (\beta + \delta )$ $ \Longleftrightarrow$ $ \left\|\begin{array}{c} \alpha + \gamma = \beta + \delta \\
 \\
(\ \alpha + \beta = \gamma + \delta\ )\end{array}\right\|$ $ \Longleftrightarrow$ $ \alpha = \delta\ \wedge\ \beta = \gamma$ $ \Longleftrightarrow$ $ I\in XY$ .



PP16 (Ruben Auqui). Let a square $ABOC$ with $AB=1$ and $w=\mathbb C(O,1)$ . For $Y\in (AB)$ let the midpoint

$M$ of $[YC]$ and the intersection $X\in BM\cap AC$ . Prove that $XY$ is tangent to $w\ \iff\ \tan\widehat{AXY}=\frac 34$ .


Proof. Denote $CX=x\ ,\ BY=y$ , where $\{x,y\}\subset (0,1)$ . Thus, $AX=1-x\ ,\ AY=1-y$ and $\boxed{\tan\widehat{AXY}=\frac{1-y}{1-x}}\ (*)$ . Apply the Menelaus' theorem to

$\overline{BMX}/\triangle AYC\ :\ \frac {BY}{BA}\cdot\frac {XA}{XC}\cdot\frac {MC}{MY}=1\iff$ $\boxed{y=x(1+y)}\ (1)$ . Observe that $XY$ is tangent to $w\ \iff$ $XY=XC+YB\iff$ $XY^2=(XC+YB)^2\iff$

$AX^2+AY^2=(x+y)^2\iff$ $(1-x)^2+(1-y)^2=(x+y)^2\iff$ $\boxed{y+x(1+y)=1}\ (2)$ . From the relations $(1)\wedge (2)$ obtain that $y=x(1+y)=1-y\iff$

$3x=2y=1\implies$ $\frac x2=\frac y3=\frac 16=\frac {1-y}3=\frac {1-x}4\implies$ $\frac {1-y}{1-x}=\frac 34\stackrel{(*)}{\implies}$ $\tan\widehat{AXY}=\frac 34$ .



PP17. Let $w=C(O,1)$ and $\{A,B\}\subset w$ so that $OA\perp OB$ . For $M\in \mathrm{small}\ \overarc{AB}$ construct the squares $AMNX$ and $BMPY$ . Prove that $OX^2+OY^2=6$ ,

Proof. Denote the point $C$ so that $OACB$ is a square and $\left\{\begin{array}{ccccc}
m\left(\widehat{MAC}\right)=u & \implies & m\left(\widehat{OAX}\right)=180^{\circ}-u & \mathrm{and} & MA=2\sin u\\\\
m\left(\widehat{MBC}\right)=v & \implies &  m\left(\widehat{OBY}\right)=180^{\circ}-v & \mathrm{and} & MB=2\sin v\end{array}\right\|$ . Apply the generalized Pythagoras' $:$

$\blacktriangleright\ OAX\ :\ OX^2=AO^2+AX^2-2\cdot AO\cdot AX\cdot \cos\widehat{OAX}=$ $1+4\sin^2u+4\sin u\cos u=1+2(1-\cos 2u)+2\sin 2u\implies$ $OX^2=3+2(\sin 2u-\cos 2u)$ .

$\blacktriangleright\ OBY\ :\ OB^2=BO^2+BY^2-2\cdot BO\cdot BY\cdot \cos\widehat{OBY}=$ $1+4\sin^2v+4\sin v\cos v=1+2(1-\cos 2v)+2\sin 2v\implies$ $OY^2=3+2(\sin 2v-\cos 2v)$ .

Prove easily that $u+v=45^{\circ}$ . In conclusion, $\left\{\begin{array}{c}
\sin 2u=\cos 2v\\\\
\cos 2u=\sin 2v\end{array}\right\|\implies$ $OX^2+OY^2=6+2[(\sin 2u-\cos 2v)+(\sin 2v-\cos 2u)]\implies$ $\boxed{OX^2+OY^2=6}$ .



PP18. Let $ABEC$ be a convex quadrilateral with $\left\{\begin{array}{cc}
m\left(\widehat{BAC}\right) =\alpha\ ; & m\left(\widehat{BEC}\right)=90^{\circ}-\alpha\\\\
m\left(\widehat{BCA}\right) =\beta\ ; & m\left(\widehat{EBC}\right)=90^{\circ}-\beta\end{array}\right\|$ and $\left\{\begin{array}{cc}
AC=a\ ; & BE=b\\\\
AB=x\ ; & CE=y\end{array}\right\|$ . Prove that $x+y=\sqrt{a^2+b^2}$ .

Proof 1 (metric). Denote $\left\{\begin{array}{cc}
F\in (BE)\ , & CF\perp BE\\\\
G\in (AC)\ , & BG\perp AC\end{array}\right\|$ and $\left\{\begin{array}{cc}
AG=q\ ;\ FE=p\\\\
BG=BF=n\\\\
CG=CF=m\end{array}\right\|$ . Observe that $\boxed{\begin{array}{c}
n^2+q^2=x^2\\\\
m^2+p^2=y^2\end{array}}\ (1)$ and $\triangle ABG\sim\triangle CEF\implies$

$\boxed{mn=pq}\ (2)$ . Using the well-known identity $\left(n^2+q^2\right)\left(m^2+p^2\right)=(mq+np)^2+(mn-pq)^2\stackrel{(2)}{\implies}$ $\left(n^2+q^2\right)\left(m^2+p^2\right)=(mq+np)^2\stackrel{(1)}{\implies}$

$\boxed{xy=mq+np}\ (*)$ . In conclusion, $\left\{\begin{array}{c}
a^2+b^2=(m+q)^2+(n+p)^2=m^2+n^2+p^2+q^2+2(np+mq)\\\\
(x+y)^2=x^2+y^2+2xy=\left(n^2+q^2\right)+\left(m^2+p^2\right)+2xy\end{array}\right\|$ $\stackrel{(*)}{\implies}\ \boxed{(x+y)^2=a^2+b^2}$ .

Proof 2 (trigonometric). Observe that $\left\{\begin{array}{ccc}
(x+y)\cos \alpha =a & \implies & (x+y)^2\cos^2\alpha =a^2\\\\
(x+y)\sin\alpha =b & \implies & (x+y)^2\sin^2\alpha =b^2\end{array}\right\|\implies$ $(x+y)^2=a^2+b^2\implies x+y=\sqrt{a^2+b^2}$ .



PP19. Let $\triangle ABC$ and an interior point $P$ for which denote $\left\{\begin{array}{c}
D\in AP\cap BC\\\\
E\in CP\cap BA\\\\
F\in PB\cap AC\end{array}\right\|$ . Prove that $[ABC]\cdot [DPE]=[APC]\cdot [DBE]$ , where $[XYZ]$ is the area of the $\triangle XYZ$ .

Proof. Apply the Menelaus's theorem $:\ \odot\begin{array}{cccc}
\nearrow & \overline{BPF}/\triangle ACE\ : & \frac {BA}{BE}\cdot\frac {PE}{PC}\cdot\frac {FC}{FA}=1 & \searrow\\\\
\searrow & \overline{BPF}/\triangle ACD\ : & \frac {BC}{BD}\cdot\frac {PD}{PA}\cdot\frac {FA}{FC}=1 & \nearrow\end{array}\bigodot\ \implies$

$\frac {BA\cdot BC}{BE\cdot BD}=$ $\frac {PA\cdot PC}{PD\cdot PE}\implies$ $\frac {[ABC]}{[DBE]}=\frac {[APC]}{[DPE]}\implies$ $[ABC]\cdot [DPE]=[APC]\cdot [DBE]$ .



PP20 (Miguel Ochoa Sanchez). Let $\triangle ABC$ with $IO\parallel AB$ . Prove that the area $S$ of the triangle $ABC$ is given by the relation $S=r(2R-r)\cdot\sqrt{\frac {R+r}{R-r}}$ .

Proof. $IO\parallel AB\iff$ $ABC$ is acute and $r=R\cos C\iff$ $\boxed{\cos C=\frac rR}\ (*)\iff$ $\cos A+\cos B=1$ . Thus, $\boxed{\sin C=\frac {\sqrt{R^2-r^2}}{R}}\ (1)$ and $\cos C=1-2\sin^2\frac C2\iff$

$\boxed{\sin\frac C2=\sqrt{\frac {R-r}{2R}}}\ (2)$ . Therefore, $1=\cos A+\cos B=2\cos\frac {A-B}{2}\sin\frac C2\stackrel{(2)}{\iff}$ $\boxed{\cos\frac {A-B}{2}=\frac 12\cdot\sqrt{\frac {2R}{R-r}}}\ (3)\iff$ $\cos (A-B)=2\cos^2\frac {A-B}{2}-1\stackrel{(3)}{\iff}$

$\boxed{\cos (A-B)=\frac r{R-r}}\ (4)$ . Since $2\sin A\sin B=\cos (A-B)-\cos (A+B)=$ $\cos (A-B)+\cos C$ obtain from the relations $(*)$ and $(4)$ $2\sin A\sin B=\frac {r}{R-r}+\frac rR$ , i.e.

$\boxed{\sin A\sin B=\frac {r(2R-r)}{2R(R-r)}}\ (5)$ . In conclusion, using the well-known identity $S=2R^2\sin A\sin B\sin C$ and the relations $(1)$ and $(5)$ obtain finally that

$S=R^2\cdot \frac {r(2R-r)}{R(R-r)}\cdot\frac {\sqrt{R^2-r^2}}{R}$ , i.e. the required relation $S=r(2R-r)\cdot\sqrt{\frac {R+r}{R-r}}$ . I used $\boxed{\cos A+\cos B+\cos C=1+\frac rR}$ . Observe that

$\cos A\cos B=\cos (A-B)-\sin A\sin B\ \stackrel{(4\wedge 5)}{\implies}\ \cos A\cos B=$ $\frac r{R-r}-\frac {r(2R-r)}{2R(R-r)}\implies$ $\boxed{\cos A\cos B=\frac {r^2}{2R(R-r)}}$ .



PP21 (Ruben Huillca). Let $\triangle ABC$ with circumcircle $w=C(O,R)$ . The circle $\alpha=C(K,\rho )$ is tangent to $(AB$ , $(AC$

and is exterior tangent to $w$ . Prove that $\boxed{\cos\frac A2=\sqrt {\frac {r_a}{\rho}}}$ , where $w_a=C\left(I_a,r_a\right)$ is the $A$-excircle of $\triangle ABC$ .


Proof. Denote $\left\{\begin{array}{ccc}
D\in AC\cap \alpha & ; & CD=x\\\\
S\in KD & ; & OS\perp KD\end{array}\right\|$ . Thus, $I\in AK\iff \frac{\rho}{r}=$ $\frac {b+x}{s-a}$ , i.e. $\boxed{b+x=\frac {\rho (s-a)}{r}}\ (1)$ and $OK^2=OS^2+KS^2$ $\iff$

$(R+\rho )^2=(\rho -R\cos B)^2+(R\sin B+x)^2$ $\iff$ $2R\rho (1+\cos B)=$ $x(x+b)\stackrel{(1)}{\iff}$ $4R\rho\cos^2\frac B2=$ $\frac {x\rho (s-a)}{r}$ $\iff$ $4Rr\cdot\frac {s(s-b)}{ac}=$ $x(s-a)$ $\iff$

$b(s-b)=x(s-a)$ $\iff$ $x=\frac {b(s-b)}{s-a}$ $\iff$ $b+x=\frac {bc}{s-a}\ \stackrel{(1)}{\iff}\ \frac {bc}{s-a}=\frac {\rho (s-a)}{r}$ . Thus, $\frac {bc}{s-a}=$ $\rho\cdot\frac {s-a}{r}=$ $\rho\cdot\frac {s}{r_a}$ $\implies$ $\frac {s(s-a)}{bc}=$ $\frac {r_a}{\rho}$ $\iff$ $\cos\frac A2=$ $\sqrt{\frac {r_a}{\rho}}$ .



PP22. Let $w$ be a circle with the diameter $[BC]$ and $A\in w$ be a point for which denote $T\in AA\cap BC$ and $D\in (BC)\ ,\ AD\perp BC$ . Prove that $AD\cdot AT=BD\cdot CT$ .

Proof 1. Prove easily that the ray $[AC$ is the bisector of $\widehat{DAT}$ , i.e. $\left\{\begin{array}{ccc}
\frac {CD}{CT} & = & \frac {AD}{AT}\\\\
AD^2 & = & DB\cdot DC\end{array}\right\|$ $\bigodot\implies$ $\frac {AD}{CT}=\frac {DB}{AT}\implies$ $AD\cdot AT=CT\cdot BD$ .

Proof 2. Let $\phi =m\left(\widehat{ABT}\right)$ . Theorem of Sines in $\triangle ACT\ :\ \frac {CT}{AT}=$ $\frac {\sin\widehat {CAT}}{\sin\widehat{ACT}}=$ $\frac {\sin\phi}{\sin\left(90^{\circ}+\phi \right)}$ $\implies$ $\frac {CT}{AT}=$ $\tan\phi=\frac {AD}{BD}$ .So $\frac {CT}{AT}=\frac {AD}{BD}\ ,$ i.e. $AD\cdot AT=BD\cdot CT$ .


Extension. Let $\triangle ABC$ with the circumcircle $w$ and $AC>AB$ . Let $T\in AA\cap BC$ and $D\in (BC)$

so that $\left(\widehat{ADC}\right)=A$ . Prove that $a^2=b^2+mc^2\implies m\cdot AD\cdot AT=BD\cdot CT$ .



PP23. Prove that in any triangle $ABC$ there is the following equivalence: $\boxed{\ a^2=4S\tan\frac A2\ \iff\ b=c\ }$ .

Proof 1 (metric). $a^2=4S\tan\frac A2\iff$ $a^2=4sr\cdot\frac r{s-a}\iff$ $a^2(s-a)=4sr^2\iff$ $a^2(s-a)=4(s-a)(s-b)(s-c)\iff$ $a^2=4(s-b)(s-c)\iff$ $b=c$ .

Proof 2 (trigonometric). $a^2=4S\tan\frac A2\iff$ $a^2R=abc\tan\frac A2\iff$ $aR=bc\tan\frac A2\iff$ $\sin A=2\sin B\sin C\tan\frac A2\iff$ $2\sin\frac A2\cos\frac A2=2\sin B\sin C\cdot \frac {\sin\frac A2}{\cos\frac A2}\iff$

$2\cos^2\frac A2=2\sin B\sin C\iff$ $1+\cos A=\cos (B-C)-\cos (B+C)\iff$ $1+\cos A=\cos (B-C)+\cos A\iff$ $\cos (B-C)=1\iff B=C\iff b=c$ .

Remark. $a^2=4S\tan\frac A2+2aR\tan\frac A2\left[1-\cos (B-C)\right]\implies$ $\boxed{\ a^2\ge 4S\tan\frac A2\ }$ .
This post has been edited 262 times. Last edited by Virgil Nicula, Jul 7, 2016, 4:23 PM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404395
  • Total comments: 37
Search Blog
a