80. Three concurrent perpendiculars (the Carnot's lemma).

by Virgil Nicula, Aug 5, 2010, 2:27 PM

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=360004

P1. Let $ABC$ be a non-right triangle with the orthocenter $H$ and let $MNP$ be its median triangle, where $M\in BC$ , $N\in CA$ , $P\in AB$ . Denote

$D\in MH\cap NP$ , $E\in NH\cap MP$ , $F\in PH\cap MN$ . Prove that the perpendiculars from $D$ , $E$ , $F$ to $BC$ , $CA$ , $AB$ are concurrent.


Proof. Denote $U\in AH\cap BC$ , $V\in BH\cap CA$ , $W\in CH\cap AB$ and $X=\mathrm{pr}_{BC}D$ , $Y=\mathrm{pr}_{CA}E$ , $Z=\mathrm{pr}_{AB}F$ . Observe that $:\ HB^2-HC^2=2\cdot \overline{BC}\cdot \overline{MU}$ and

$\frac {\overline {XM}}{\overline {UM}}=\frac {\overline {AU}}{2\cdot\overline{HU}}$ $\implies$ $\overline {XM}=\frac {\overline{AU}}{2\cdot\overline{HU}}\cdot \overline {UM}$ . Therefore, $\sum \left(XB^2-XC^2\right)=$ $\sum \left(\overline {XB}-\overline {XC}\right)\cdot\left(\overline {XB}+\overline {XC}\right)=$ $2\cdot\sum \overline {CB}\cdot \overline{XM}=$ $\sum \overline{BC}\cdot\overline{MU} \cdot \frac {\overline{AU}}{\overline{HU}}=$

$\frac 12\cdot \sum\left(HB^2-HC^2\right)\cdot\tan B\tan C=$ $\sum \left(c^2-b^2\right)\cdot\frac {4S}{a^2+c^2-b^2}\cdot\frac {4S}{a^2+b^2-c^2}=$ $8S^2\cdot\sum\left(\frac {1}{a^2+b^2-c^2}-\frac {1}{a^2+c^2-b^2}\right)=0$ .

Using Carnot's lemma results the conclusion, i.e. the perpendiculars from $D$ , $E$ , $F$ to $BC$ , $CA$ , $AB$ are concurrent.


P2 (Miguel Ochoa Sanchez). Let an acute $\triangle ABC$ and three interior points $\{M,N,P\}$ so that $\left\{\begin{array}{ccc}
MN\perp BC & ; & D\in MN\cap (BC)\\\\
NP\perp CA & ; & E\in NP\cap (CA)\\\\
PM\perp AB & ; & F\in PM\cap (AB)\end{array}\right\|\ .$

Denote $\left\{\begin{array}{ccccc}
AF=a & ; & BD=b & ; & CE=c\\\\
BF=x & ; & CD=y & ; & AE=z\\\\
AB=a+x & ; & BC=b+y & ; & CA=c+z\end{array}\right\|\ .$ Prove that $\sum x^2-\sum a^2=4\cdot \sqrt{[MNP]\cdot [ABC]}\ .$


Proof.Let $\left\{\begin{array}{ccc}
U\in (AB)\ ,\ NU\perp AB & ; & UF=u=h_n\\\\
V\in (BC)\ ,\ PV\perp BC & ; & VD=v=h_p\\\\
W\in (CA)\ ,\ MW\perp CA & ; & WE=w=h_m\end{array}\right\|\ .$ Thus, $\triangle MNP\sim BCA\ ,$ i.e. $\frac {MN}{BC}=\frac {NP}{CA}=\frac {PM}{AB}\equiv k\equiv \frac {h_p}{h_a}=\frac {h_m}{h_b}=\frac {h_n}{h_c}=\sqrt{\frac {[MNP]}{[ABC]}}$ where $k$ is the ratio

of similarity. So $\left\{\begin{array}{c}
2\cdot [MNP]=MN\cdot h_p=NP\cdot h_m=PM\cdot h_n\\\\
2\cdot [ABC]=BC\cdot h_a=CA\cdot h_b=AB\cdot h_c\end{array}\right\|$ Apply Carnot's theorem to $\odot\begin{array}{cccccc}
\nearrow & M\ : & a^2+b^2+(c+w)^2 & = & x^2+y^2+(z-w)^2 & \searrow\\\\
\rightarrow & N\ : & (a+u)^2+b^2+c^2 & = & (x-u)^2+y^2+z^2 & \rightarrow\\\\
\searrow & P\ : & a^2+(b+v)^2+c^2 & = & x^2+(y-v)^2+z^2 & \nearrow\end{array}\bigoplus\implies$

$3\sum a^2+\sum u^2+2\cdot\sum (au)=3\sum x^2+\sum u^2-2\cdot\sum (xu)\iff$ $3\cdot\left(\sum x^2-\sum a^2\right)=2\cdot\sum u(a+x)\iff$ $\boxed{\sum x^2-\sum a^2=\frac 23\cdot\sum AB\cdot h_n}\ (*)\ .$

Therefore, $\frac {[MNP]}{[ABC]}=\frac {MN\cdot h_p}{BC\cdot h_a}=k^2\ ,$ i.e. $\boxed{[MNP]=k^2\cdot [ABC]}\ (1)\ .$ Thus, $AB\cdot h_n=\frac {2[ABC]}{h_c}\cdot h_n=$ $2[ABC]\cdot k=$ $2[ABC]\cdot\sqrt{\frac{[MNP]}{[ABC]}}=$ $2\cdot\sqrt{[MNP]\cdot[ABC]}\ ,$

i.e. (analogously) $AB\cdot h_n=BC\cdot h_p=CA\cdot h_m=2\cdot\sqrt{[MNP]\cdot[ABC]}\ .$ In conclusion, $\sum x^2-\sum a^2=\frac 23\cdot\sum AB\cdot h_n=4\cdot\sqrt{[MNP]\cdot[ABC]}$ (Baris Altay).


http://i944.photobucket.com/albums/ad288/GemenLeu/14095956_10208454583635208_4478430993812072766_n_zpstmxvgw9r.jpg
This post has been edited 59 times. Last edited by Virgil Nicula, Aug 26, 2016, 1:25 AM

Comment

0 Comments

Own problems or extensions/generalizations of some problems which was posted here.

avatar

Virgil Nicula
Archives
+ October 2017
+ September 2017
+ December 2016
+ October 2016
+ February 2016
+ September 2013
+ October 2010
+ September 2010
Shouts
Submit
  • orzzzzzzzzz

    by mathMagicOPS, Jan 9, 2025, 3:40 AM

  • this css is sus

    by ihatemath123, Aug 14, 2024, 1:53 AM

  • 391345 views moment

    by ryanbear, May 9, 2023, 6:10 AM

  • We need virgil nicula to return to aops, this blog is top 10 all time.

    by OlympusHero, Sep 14, 2022, 4:44 AM

  • :omighty: blog

    by tigerzhang, Aug 1, 2021, 12:02 AM

  • Amazing blog.

    by OlympusHero, May 13, 2021, 10:23 PM

  • the visits tho

    by GoogleNebula, Apr 14, 2021, 5:25 AM

  • Bro this blog is ripped

    by samrocksnature, Apr 14, 2021, 5:16 AM

  • Holy- Darn this is good. shame it's inactive now

    by the_mathmagician, Jan 17, 2021, 7:43 PM

  • godly blog. opopop

    by OlympusHero, Dec 30, 2020, 6:08 PM

  • long blog

    by MrMustache, Nov 11, 2020, 4:52 PM

  • 372554 views!

    by mrmath0720, Sep 28, 2020, 1:11 AM

  • wow... i am lost.

    369302 views!

    -piphi

    by piphi, Jun 10, 2020, 11:44 PM

  • That was a lot! But, really good solutions and format! Nice blog!!!! :)

    by CSPAL, May 27, 2020, 4:17 PM

  • impressive :D
    awesome. 358,000 visits?????

    by OlympusHero, May 14, 2020, 8:43 PM

72 shouts
Tags
About Owner
  • Posts: 7054
  • Joined: Jun 22, 2005
Blog Stats
  • Blog created: Apr 20, 2010
  • Total entries: 456
  • Total visits: 404396
  • Total comments: 37
Search Blog
a